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Abstract

The Alpine Environmental Data Analysis Center (AlpEnDAC) “focuses on monitoring, un-
derstanding and forecasting of environmental changes in the Alpine region” [Alp]. For this
purpose, AlpEnDAC collects instrument data streams from different sources and provides
processing capabilities. To make more efficient use of the instruments, users should be able
to control them remotely and, in addition, AlpEnDAC should be able to trigger automatic
measurements for predefined events. Due to a variety of stakeholders (academia, other re-
searchers, public agencies, …) with competing interests, who intend to use some of these
instruments, proper scheduling of available measurement cycles is a key requirement. The
main reasons are the high operating costs of the instruments and the discrepancy between
the limited number of hours the instrument can be run and the larger number of people
who want to use the instrument. There are many requirements that make efficient schedul-
ing difficult, including: (1) priority (e.g., the instrument’s owner has higher priority than
other users), (2) an instrument’s measurement and startup times, (3) maintenance, and (4)
dependencies between instruments. To solve the scheduling tasks with their dependencies,
numerous approaches exist, although the scheduling problem itself is NP-hard when a per-
fect schedule must be found. Fortunately, scheduling algorithms exist which work efficiently
for shorter schedules with few constraints, and which can find semi-optimal solutions by
using heuristics and approximations. A variety of software exists which aims to solve these
problems, e.g., software written by NASA [NAS]. Their software is used, among other uses,
for scheduling spacecraft instruments, including its requirements for operation. This thesis
will (1) compare and contrast relevant research on scheduling, (2) perform a comprehensive
requirements analysis, and (3) provide a case study by implementing a suitable scheduling
solution for AlpEnDAC. The final implementation will be accessible via a REST-API and
makes use of Apache Kafka, a distributed document streaming platform, to interact with
other components of AlpEnDAC (e.g., Computing on Demand). The software architecture
implemented for this thesis consists of three components: (1) a REST-API “frontend” that
takes job requests to be scheduled from authorized users, (2) the scheduling software, which
takes the jobs from the frontend and tries to find the optimum schedule which respects the
various requirements and dependencies, and (3) a REST-API “backend” that provides a
scheduled list of pending jobs for the instruments to consume and execute.
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1 Introduction

The AlpEnDAC is a facility for Research Data Management and on-demand simulation,
which “focuses on monitoring, understanding and forecasting of environmental changes in
the Alpine region” [Alp]. It is run by the DLR, the University of Augsburg, the LRZ, the
Environment Research Station Schneefernerhaus (UFS) and the bifa Umweltinstitut in the
scope of a project collaboration. It serves scientists of the VAO collaboration. One task
of the centre is to provide programmable interfaces to various instruments of partnered
organizations, so that researchers and other authorized users can control the instruments,
get data from them, or send requests for research jobs (such as taking a picture at a specified
time) to be executed. These “OOD” interfaces (in AlpEnDAC terminology) and the centre
make it possible for organizations to have access to each other’s instruments and data, and
enable collaborative research.

One of the instruments that is part of AlpEnDAC and a candidate for OOD is the Fast
Airglow Imager (FAIM) [DLR] camera in Oberpfaffenhoffen. This device takes images of
the mesopause for use in various projects. An illustration of the FAIM camera is shown in
Figure 1.1.

Figure 1.1: An illustration of the FAIM [Han21b].

The mesopause is a region in the atmosphere “where the temperature of the atmosphere
reaches its lowest point” [MW]. It is approximately 80km above the ground [Par07], which
can be seen in Figure 1.2.
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1 Introduction

Figure 1.2: “Layers of Earth’s atmosphere” [Enc]. The mesopause can be found at an altitude
of 85km.

Figure 1.3: Location of various FAIM cameras in the Alps [DLR]. OPN stands for Oberp-
faffenhoffen in Germany, OTL for Otlica in Slovenia.
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When the instrument in Oberpfaffenhofen is used together with another FAIM instrument
in Otlica, Slovenia, three-dimensional (stereoscopic) images can be taken. Similar to a 3D
camera used for movies, the two images are offset in a way as to cover the same part of the
sky from different vantage points, and by combining them, create a 3D image. 3D imaging
makes analyzing changes in the mesopause easier [DLR]. The geographic location of the
FAIM instruments can be seen in Figure 1.3.

The previous way of viewing, submitting and removing data and Computing-on-Demand
jobs in AlpEnDAC was based on a complex PHP application, and the corresponding APIs
made it hard to onboard new users and get them working with the endpoints quickly. OOD,
i.e., the scheduling and instrument operation capabilities which are implemented in this
work, have not been part of AlpEnDAC and its APIs until now.

The goal of this work is to provide a modern framework and API for submitting jobs and
data to AlpEnDAC. This API can be viewed in OpenAPI [Ope] and can also schedule OOD
events the way the instrument owners require. The implementation of this framework has
the goal of making other future interfaces easier to create and program. Furthermore, a
unified location and structure of the API using OpenAPI makes onboarding new users more
streamlined. A scheduler is used here as a system which receives a list of possible jobs that
should be executed and finds the optimal subset of jobs and their temporal ordering that can
be actually be executed during a given time period. The reason a schedule is needed is that
the camera can only take a picture of a certain portion of the sky at a time, and multiple
users might want to point it to different locations at the same time. Therefore, a system
that allows instruments to be used to their full potential is necessary to ensure some level
of fairness and consistency for the jobs that are actually executed (an “optimal” schedule).
What an optimal schedule actually is, depends on various factors and goals. A scheduler
also allows for schedules to be more dynamic and efficient, e.g., an instrument might have
service requirements, which can be included and changed in the schedule, and the rest of the
schedule can adapt on the fly.

This work will provide an in-depth requirements analysis performed for a modern API with
a configurable, reusable and generic scheduler. It will also describe how scheduling works,
including the theoretical underpinnings. Finally, it will provide a case study, by describing
the process of creating and implementing the system for FAIM in Oberpfaffenhoffen.

This process of creating the REST-API [Fie00], the framework and the scheduler, and
putting it into production is done in multiple steps. In Chapter 2 explores the theoretical
background regarding scheduling and OOD specific aspects. This includes researching the
current state of scheduling, including important concepts and definitions related to schedul-
ing and comparing different scheduling algorithms and strategies. Chapter 3 describes the
requirements from the operators of FAIM (the DLR) and AlpEnDAC. These requirements
include more general software related requirements, and specific requirements related to
scheduling. Implementing the scheduling requirements in code for the scheduling library
(in this case OR-Tools [PF]), so that the scheduler will create consistent and fair schedules
for the instrument is described in Chapter 4. This chapter also discusses why OR-Tools
was chosen compared to other libraries and describes its design. Chapter 5 describes the
next steps, which are designing the software architecture that will provide the REST-API,
and then programming, deploying and testing the API and integrating the scheduler. This
chapter also includes the design of the new API to communicate with the instrument and
allowing users to control adding and removing of jobs. It also includes a brief overview how
the API is documented using OpenAPI and how the rest of the code is documented for
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1 Introduction

future users and developers. In Chapter 6, the specified requirements from Chapter 3 are
compared to the implementation, which includes getting feedback from users and making
changes if required. In Chapter 7, the work is concluded by a summary and an overview of
future possible development.
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2 Background

2.1 General Overview
There are multiple theoretical aspects that need to be considered in this work. One is of
course scheduling itself, which is described in Section 2.2. Section 2.3 provides an overview of
the API architecture. Another aspect, described in Section 2.4, is measuring the performance
of a scheduler, both in terms of speed and “quality” of a schedule. Further theoretical aspects
specific to OOD or FAIM, including some related to scheduling, are described in Section 2.5.

2.2 Scheduling
Scheduling is the process of creating a plan to achieve specified goals. These schedules can
be done for a wide variety of objects, instruments, vehicles and even people. The goals can
be varied, and include controlling a spacecraft [JMM+00] or allocating people on a factory
floor. To achieve these goals, there is usually some metric used to define what a “good” or
correct plan is, such as that the plan actually can be achieved by the scheduled entity, or
e.g., that the amount of fuel used is minimized.

There are many tools and approaches that are able to solve scheduling problems [RPB13,
JMM+00, BDP96, DCT19]. In this work, we concentrate on scheduling problems that are
solved by using constraint programming, also known as CAIP. This type of scheduling is
done by including various constraints that need to be observed when creating a plan to
achieve the goal.

An example for a scheduling problem that includes people is the “job shop problem” as
defined by [BDP96], which is used to test a wide variety of scheduling software [DCT19].
The problem consists in allocating people and tools to manufacture an unspecified item,
and in creating a schedule that minimizes the time to completion [BDP96]. The time to
completion is also known as a “makespan”, i.e., “the time interval between the start of the
first operation and the end of the last” [DCT19]. This example problem can include a variety
of constraints and tuning parameters, such as number of workers, machines or time for each
step.

However, constraints for scheduling can be very varied depending on the problem domain.
Some very common constraints include that one action has to occur directly after another,
actions cannot overlap, or that time between actions is needed, e.g., for cool down or move-
ment of parts of an instrument. Constraints can also include dependencies, meaning that
e.g., action A can only occur after action B has concluded and the amount of resources,
such as fuel, are enough to carry out A. Another example of a constraint is that instruments
should be used efficiently, e.g., a telescope should not turn in a lot of different directions one
after the other, if it can be avoided.

The way CAIP solves scheduling problems is with constraint programming [Ros06], which
revolve around algorithms to solve constraint satisfaction problems (CSP) or constraint
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2 Background

optimization problems (COP) [Apt03]. Constraint satisfaction problems are mathematical
problems where the goal is to find one or more solutions to the problem (or prove that
there are none) [Apt03]1. In constraint optimization problems the goal is to find a solution
and, if possible, finding the proven “optimal” solution [Apt03]. The difference to constraint
satisfaction problems is that instead of just finding solutions to the problem under the given
constraints, there is an “objective function” that defines what optimality means. Many
problems are defined so that the goals are best met when a value is maximized or minimized,
depending on the use-case. An “objective function” can then be calculated from various
factors, and a constraint programming solver has the goal to minimize or maximize this
function, while still fulfilling the constraints. An “optimal” solution is a solution that satisfies
all constraints and the solver has proven it has found the best solution, as defined by the
result of the “objective function”.

For constraint optimization problems there is also a difference between hard and soft
constraints [Apt03]. Hard constraints are constraints that must be met for a solution to even
exist. Examples include constraints like the maximum possible of fuel which can be used,
or the maximum possible time available. These constraints are often the most important,
especially for use-cases such as rovers or production processes that have very specific time
requirements.

Soft constraints meanwhile, do not need necessarily need to fully met for a solution to
exist (“partially satisfied”) [Apt03]. However, if a soft constraint is not met, a solution
might be suboptimal [Zha02]. A lot of soft constraints can be modeled in constraint pro-
gramming to have an associated “cost” for the constraint being violated, which feeds into
the “objective function” [CCJK06]. This means that a solver will try to find better solutions
to minimize these costs as much as possible [Zha02]. An example in job scheduling would
be allowing overtime for workers to meet a production deadline. The soft constraint would
be no overtime, which can be violated with the “cost” being modelled with the extra wages
needed.

Soft constraints allow for solutions to be calculated more efficiently and quickly, because
finding an “optimal” solution using only hard constraints might take a very long time to
calculate (and can be NP-Hard in the worst case) [CCJK06, Zha02]. This is especially
important for something such as scheduling, where a “good-enough” solution is better than
a solution that has not finished calculating by the time it is needed. It is also highly beneficial
for other, very dynamic optimization problems, or optimization problems that need to be
run on less powerful hardware.

In general, constraint optimization problems are a good fit for scheduling problems, where
often the goal is to minimize or maximize a value, for example the amount of time needed to
run should be minimized or the amount of manufactured items in a production plant should
be maximized.

Scheduling tools like OR-Tools [PF] or NASA’s EUROPA [BBD+12] scheduling and plan-
ning tool use constraint programming to solve scheduling problems [RPB13, PF]. Both tools
have built in types for a different kinds of constraints and scheduling primitives. These in-
clude intervals, which describe an event that has a start and end time, and can sometimes
include additional attributes [RPB13, OR-b]. A goal can be set to maximize the cumula-
tive duration of all events. The solver will then try to optimize for this goal while taking
into account all other constraints, such as the horizon. The “horizon” is a concept which

1An example for a constraint satisfaction problem would be: find the values for a and b that satisfy a+b < 5.
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some scheduling tools operate on [RPB13, PF]. It defines a range with predefined start
and end integer values, and is often defined as the range from 0 (when tasks can start) to
a maximum value, such as a fixed deadline for all tasks. Schedulers using this concept do
not describe time in an “everyday format”, but by a number (increasing with time, e.g.,
number of seconds) relative to a defined start time. The mapping between scheduler in-
ternal (relative) and “real-life” timestamps (such times in UTC) is done outside the actual
solvers. For example, in this work, each night starts at a horizon value of 0 (dusk) and ends
n = round(tdawn/s − tdusk/s) seconds later, defined as the end of the horizon. Each event’s
scheduler internal start and end timestamps are then calculated so that their “real-life” start
and “real-life” end timestamps are relative to the dusk timestamp. An example of this map-
ping is: an event that starts at 20 : 00, with dusk being at 19 : 30 would have a relative start
time in OR-Tools of 1, 800.2

OR-Tools also has “optional” intervals, which are intervals that do not need to be included.
This means that if an interval cannot be scheduled given the constraints, it is excluded. A
typical scheduling objective would be to maximize the cumulative duration of all included
(“allowed”) events. This is especially useful for creating dynamic schedules, where changes
to the schedule mean that some events would need to be removed. Another advantage is that
an “optimal” schedule can always be found, if considering only optional intervals, because
if no events meet the constraints, then an empty result with a duration of 0 is still a valid
solution. With normal intervals, all intervals need to be included3, which means an “optimal”
schedule, or even any solution might not be found.

The flexibility of constraint programming means that a multitude of constraints can be
added and enforced to create a schedule, which makes automated scheduling for a large
amount of use cases possible [BLPN01, Ros06].

2.3 APIs
To enable the scheduling software to be used by people and software alike, the solution was to
create an HTTP REST-API, which is an API for communication between different systems
using the HTTP protocol, in an architectural style defined by R. Fielding [Fie00]. HTTP
REST-APIs are widely used [MPD10], which enables users, developers and integrators an
easy way to work with the OOD system in many programming languages and with an easy
learning curve.

This REST-API for OOD was further specified by following the JSON:API [JSO] stan-
dard, which defines a standard structure for JSON [Ecm15] documents which are sent and
received over a REST-API. JSON was also chosen because it is a well known and widely
used document syntax, which can also be used by many programming languages [BRSV17].

JSON:API allows for each document to have a similar structure, and it allows future
documents for other OOD implementations to have a specified standard to adhere to. It
also includes various required structural elements, e.g., for “data” documents it requires each
JSON object to have an “id” and “type” [JSO]. This means that each object can be uniquely
identified and has a known type, which makes working with large amounts of different data
much easier. Each object having an id of type UUID4 [ITU] makes this uniqueness possible.
This is because UUID4 (UUID version 4) values are random numbers with 2122 possible

220 : 00− 19 : 30 = 30min = 30× 60 s = 1, 800 s
3At least in the way OR-Tools works.
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values, which means the chances of a collision are very low [ITU]. JSON Schema [WAHD20]
is also used to validate that the JSON documents are following the JSON:API specification,
and it can also validate properties of the data themselves, e.g., that a JSON value is a
date-time with the correct format.

2.4 Performance Metrics for Schedulers
There are many performance metrics for schedulers [SFS+14, DCT19]. One is of course
speed of execution, i.e., how long it takes the scheduler to create a schedule. Another key
metric is how well the scheduler then fulfill its stated goal, e.g., filling the time horizon
(leaving the smallest amount of gaps) as much as possible, maximizing the number of events
scheduled or the number of users who get their events scheduled [DCT19]. Other important
performance metrics include if the schedule can update the schedule dynamically, how much
time the update takes as well as the stability of the schedule.

Stability for a scheduler describes how much changing one event impacts the rest of the
schedule, e.g., replacing one event with a slightly longer event might cause 30 events to be
scheduled differently [FF10]. This is mostly not a problem if events are fixed, i.e., they have
a well-defined start and end time and have no dependency constraints [FF10]. However, if
the events are more dynamic, either with dependency constraints or events which can run
at any time during a time horizon, small changes can have a big impact. Events scheduled
anytime in a horizon means that the events have a specified duration, but not a specified
start and end time. The start time is calculated by the scheduler to fit in the schedule where
appropriate, and end time is just start time plus duration. Dependency constraints describe
sequences of events, e.g., event A must occur before event B, otherwise the instrument can’t
function. Then, dynamic scheduling can cause the whole schedule to be reshuffled to try
and fulfill the scheduling goals when events are inserted or removed. Therefore, measuring
how well a scheduler can keep the schedule stable is often very important [FF10].

2.5 Domain Specific Concepts
This section describes OOD and FAIM specific theoretical concepts, such as how to handle
timezones, changes to the time because of DST, and the concepts of dusk and dawn as used
by the DLR.

One often repeating aspect of scheduling is the correct treatment of timezones and DST,
where “missing” or “duplicated” hours can create problems. Governmental decisions to
change timezones or the DST switching point (or to eliminate DST entirely) also add to
complications in the long term. For FAIM, these issues are sidestepped because FAIM
handles times strictly in UTC. Thus, our backend works only with UTC for the FAIM im-
plementation and will only accept UTC dates in the JSON API. These restrictions eliminate
issues related to timezones and DST very easily.

The FAIM camera only takes images at night, which would colloquially be described as
the time between sunset and sunrise. However, the DLR uses the concepts of dusk and dawn,
which occur at slightly different times than sunset and sunrise. All four of these words have
official “civil” descriptions, i.e., at what angles of the sun these time periods start and end.
The time period used by the DLR, which starts with dusk and ends with dawn, is also known
as “civil twilight” [Ast, Glo].
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2.5 Domain Specific Concepts

Other theoretical concepts are possible angles for the FAIM camera, including the concepts
of the azimuth and the zenith angle, which also need to be considered. The camera can be
rotated in two directional axes in order to take pictures. A graphical explanation of these 2
axes and their names can be seen in Figure 2.1. In our case, the “observer” in the figure is
the FAIM camera, and the “star” is the location where the camera is pointed.

Figure 2.1: Graphical representation of the azimuth and the zenith angle [Wik21]. The zenith
angle is obtained by subtracting the altitude from 90°.

The first axis the camera can move is up and down, which is specified in FAIM by the zenith
angle (0° to 70°). This can be seen in Figure 2.1, where which angle the camera is pointed
(“star”) is calculated as the difference from the zenith point. This means an angle of 0° is
the equivalent to the camera looking up as much as possible, whereas 70° means the camera
angle is much closer to the horizon. 90° would be equivalent to the camera being flat with
the horizon, which is however not possible because of mechanical limitations. The second
axis the camera can move is left and right, which is specified by the azimuth (0° to 360°).
Figure 2.1 illustrates this well: the angle is measured between the geographical/astronomical
north direction (point “N”) and the orientation of the “observer” on the horizontal plane.

Another theoretical concept is the difference between “scan” and “static” events. When
the FAIM camera takes pictures, there are 2 different modes in which it can take pictures. In
“scan” mode, the camera follows a predefined movement pattern to take a composite picture
of the full sky (Example: Figure 2.2). This takes 123 seconds, and creates a total of 35
individual pictures, which can then be merged into one. One use for this is taking pictures
during the night and then creating a timelapse sequence to track and analyse changes of the
sky. This is also the reason that “scan” events are used to fill empty spaces in the schedule,
because if there is not a certain portion of the sky that needs to be imaged, then getting a
full image can provide more value. The “cost” of a “scan”, however, is that each portion of
the sky only gets imaged once every 123 seconds.

The other mode is the “static” mode. As the name implies, the FAIM camera is pointed
to a certain static position. This position is defined by the azimuth and zenith angle values
given by the user. The camera then takes a specified number of pictures, also defined by the
user. Each image takes 0.5 seconds, and multiple images can be taken one after another.
This mode is used for taking pictures of a specific portion of the sky, but can also be used
to track something in the sky, such as a satellite, by defining when the camera should point
where. The faster imaging of “static” events “enables the study of transient features in the
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2 Background

Figure 2.2: An full sky image taken from the FAIM camera [Han21b].

airglow” [HSWB16], i.e., observing events that can occur or change very quickly, which is
otherwise not possible without a higher “temporal resolution” [HSWB16].

In this work, there is an overlap between the conceptual “scan” and “static” events, as
described above, and scan and static events, which represent the actual implementation,
including their JSON Schema representation. Although these are the same in their function-
ality and their theoretical underpinnings, they have separate styles to distinguish them, as
a draft implementation of the system used the same concept of “scan” and “static” events,
but had a different JSON Schema representation for both, known as simple events (see
Subsection 6.1.2). In this work, scan and static will represent scan and static events as
both the concept and their current implementation, whereas “scan” and “static” will only
represent the concept.
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3 Requirements Analysis

In this chapter, the requirements analysis for the system built in this work is presented. The
analysis distinguishes Functional requirements and Non-functional requirements relating to
different thematic aspects. In particular, we distinguish requirements for different compo-
nents, including the REST-API and backend, the instruments and the scheduler. The first
section deals with the stakeholders, which are the people and organizations involved in the
project, and whose requirements are included in this analysis.

3.1 Stakeholders

There are multiple stakeholders for this project, including the LRZ, the DLR and other
organizations which are part of the AlpEnDAC project. The LRZ and DLR are the pri-
mary stakeholders, as they are directly involved in the project, and its primary users and
developers. The other organizations are the secondary stakeholders, as they might be users
and could use the code for future development and their systems. The stakeholders can be
divided into different groups: the users, the developers, and the operators of the instruments.
The operators and developers are responsible for working and developing with the system,
and are primarily responsible for its design. The users can be divided into different smaller
groups, mostly dealing with their access privilege and priority in the schedule (with range 1
to 5, 5 being the highest). Although the operators are separate stakeholder group, they have
some overlap with users, because they also consume output from the REST-API and use
the instruments. Because they own the instruments, they therefore have the highest access
privilege, meaning they have access to raw data, are able to operate the instrument as they
see fit, and have the highest priority (5) in schedules. The second group of users is those
who use the instrument and are part for the organization that owns the instrument. They
have a lower priority, e.g., 3 or 4. The third group are users of the instrument from other
institutions that are part of AlpEnDAC or are otherwise partnered with the organization of
the owners. They have a priority of 2 or 3. The fourth group would be possible users of the
instrument that have no direct affiliation with the operator’s organization, such as scientists
from other organizations, which would request access to work with the instruments. They
have priority 1 or 2.

3.2 Requirements with Respect to Scheduling

This section focuses on goals and requirements specific for the OOD use case that was
implemented in this work. The goals define which metric the scheduler is trying to optimize
to create the “optimal” schedule for the OOD instruments. The requirements were created
and refined in part with P. Hannawald at the DLR, including the FAIM specific requirements
and checks (Appendix Section 1).
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3 Requirements Analysis

3.2.1 Functional Requirements Scheduling
We start out with the functional requirements related to scheduling:

1. The scheduler shall fill out the night with events as much as possible, meaning the
time when the instrument is working is maximized.

2. Gaps in the schedule shall be filled with “scan” events, as defined in Section 2.5.

3. Events for a specified date A shall only be scheduled between day A (dusk) and on
day A+ 1 (dawn) UTC, in the location of the instrument1.

4. Dates and times for all events shall be in UTC. Because UTC is never adjusted for DST,
code dealing with possible bugs relating to clock adjustment shall not be included.

5. Stretch goal: Scheduling of the events should also take into account the priority of
the requesting user. The higher the priority, the higher the chance an event will be
scheduled, even if the goal specified in Item 1 is not fulfilled as optimally. Optimally
here means the idle time is the minimum that can be achieved.

6. Scheduler should be easy to use and extend by future programmers.

7. Scheduler shall be easy to embed into or work with Python [VRD09], because existing
code in AlpEnDAC is written in Python. This is to simplify development and working
with the rest of the system. Using one programming language also makes maintenance
easier, because language specific knowledge about syntax, tooling, integration and
deployment is only need for one language. This allows maintainers to get started
working with and extending the code much faster with less lead time.

3.2.2 Non-Functional Requirements Scheduling
Turning to the non-functional requirements related to scheduling, we have identified the
following aspects:

1. Creating new schedules shall take at most 2 seconds. Creating new schedules entails
both scheduling a new event, and if the old schedule changes, to create new filler events.

2. Sending malformed data, and data that cannot be scheduled for other reasons (such
as not being inside the horizon or having overlap) shall always be rejected by the
scheduler.

3. Schedules must always be executable by the instrument, meaning that overlapping
events and events outside the horizon shall never be scheduled or sent to the instrument.

4. The scheduler shall always be able to create a schedule which fulfills all the require-
ments. This shall be done without crashing, running indefinitely or deadlocking, or
not being able to create any kind of schedule.

5. The scheduler shall try to create an optimal schedule. An optimal schedule is defined
here as one, where the cumulative duration of the scheduled events is the maximum
possible sum, while respecting all requirements.

1The location of the FAIM camera in Oberpfaffenhofen, Germany has the coordinates latitude=48.087°,
longitude=11.280°.
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3.3 User Oriented Requirements with Respect to Interfaces/APIs
The interfaces and APIs shall fulfill certain usability requirements from a user perspective,
like having a clear structure, being easy to use and understand (helped by OpenAPI) and
being accessible.

3.3.1 Functional Requirements Interfaces/APIs
Here, we focus on the following functional requirements from a user oriented point of view:

1. The APIs shall be easily discoverable, meaning that new consumers can easily see how
to use the API. The system shall use OpenAPI to show all the URL endpoints on api.
alpendac.eu. OpenAPI must be used, because existing endpoints and infrastructure
already exist in this format at the institutes participating in AlpEnDAC.

2. The APIs shall be accessible from api.test.alpendac.eu, and possibly api.alpendac.
eu.

3. Changes to the APIs after deployment shall be minimal (such as fixing bugs) or on a
different URL. An example would be /v1/ for a scheduler which does not take into
account priority of the users and /v2/ for a scheduler which does, as described in
Subsection 3.2.1.

4. The APIs shall be secured against unauthorized users. Here an existing authentication
system using Kong already exists and shall be used.

3.3.2 Non-Functional Requirements Interfaces/APIs
Four non-functional requirements related to this portion of the system are included as well:

1. API shall return exact error messages, especially when sending a new event. This
means when the data are validated with JSON Schema and the other checks (see
Section 3.5), it shall return exactly what the problem with the data is.

2. Sending incorrect data shall not crash the API or cause problems without the user
being aware.

3. Data returned from endpoints shall always be correct, both in syntax and logic.

4. Structure of JSON data should be easily understandable, and it should be easy to
create the correct data for the endpoints. This means creating documentation and
examples and validating data sent to the API.

3.4 Sustainability and Reusability Requirements on System
To make the system sustainable and reusable, it shall be able to work with minimal mainte-
nance and shall be easily adaptable to multiple organizations to schedule their instruments.
Because reusability of the system relies heavily on the quality and reusability of the code
and quality of the documentation, Subsection 3.4.1 describes how this shall be enforced,
including any software to enforce these requirements. Subsection 3.4.2 describes how the
reusability and sustainability goals can be judged.
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3 Requirements Analysis

3.4.1 Functional Requirements Reusability
Functional requirements here mostly relate to “developer” focused concepts, e.g., code style,
sourced code management and software packaging:

1. Packages, images and software shall be up-to-date.

2. All functions, classes and modules shall have comments, which are formatted correctly,
enforced by pydocstyle [Pyd].

3. All functions, classes and modules shall be formatted according to pep8 [VRCW] and
checked for simple errors, enforced by flake8 [Pytb].

4. Tests shall be exhaustive, and test a large amount of the functionality. They shall be
run by pytest [Pyta].

5. Running the tests and linters shall be enforced and run in Gitlab CI [Gitc] and work
without errors before the code is merged and deployed.

6. Generic code that can be used for multiple instruments and instrument specific code
shall interoperate easily, by limiting the amount of coupling between the different parts.

7. Changing constraints in the scheduler shall be easy, while allowing substantial code
reuse.

8. All code and related documents shall be stored in Git on the LRZ Gitlab [Gitb] server.

3.4.2 Non-Functional Requirements Reusability
Non-functional requirements for reusability focus mostly on documentation, as other reusabil-
ity aspects are more difficult to quantify:

1. Documentation shall be exhaustive and shall include all aspects that enable a new
developer to work with the code without needing to do a deep dive.

2. Documentation shall include how to extend the system.

3. Documentation shall include information on how to deploy the system, including new
versions.

4. Code shall be clean. This includes well organized and structured files and folders.
Also, functions, classes, etc. shall be organized logically and their names should be
well-chosen and meaningful.

3.5 System/API Requirements
While Section 3.3 refers to the requirements of the API from an end-user perspective, this
section focuses on the requirements to API and system from a designers’ perspective, in-
cluding ease of implementation and changes, speed of the code and maintainability. It also
includes FAIM specific requirements for data validation and modeling.
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3.5 System/API Requirements

3.5.1 Functional Requirements System/API
These functional requirements relate mostly to best practices in modern software design and
management:

1. Code shall use Gitlab CI for building, tests and linting.

2. Code shall be deployed on the AlpEnDAC Kubernetes cluster.

3. Code shall run by default in Docker images.

4. System shall be secure with access controls and as “closed” as possible (i.e., the smallest
amount of open ports, IP addresses, etc.)

5. Code shall be stable, there shall be no code crashes. If unforeseen crashes occur,
they should cause no lasting effects. Easy recovery mechanisms shall exist, such as a
redeployment or restart of the images in Kubernetes.

6. “Safety” of the data shall be ensured, i.e., no data gets lost during crashes etc. The data
storage locations, such as a database, shall be on a NAS or similar, where scheduled
and automated backups are run and verified.

7. Everything not stored in the database, git or in secret stores2 shall be “ephemeral” [Docc],
meaning that it could be deleted and recreated without any loss of data or functional-
ity. For Docker images und kubernetes deployments this means that stopping, deleting
and recreating has no lasting effect on other data, and recreating means no manual
steps after creation [Docc].

8. Both sent and received data shall be validated with JSON Schema and other FAIM-
specific checks (See Appendix Section 1).

9. FAIM specific requirements, described in Appendix Section 1, shall be implemented.

3.5.2 Non-Functional Requirements System/API
The non-functional requirements in this section overlap a bit with those in Subsection 3.4.2,
but they have a broader scope instead of being focused on sustainability/reusability:

1. Tests for the code shall exist, and all tests and linters shall be run and pass before
code is merged.

2. Changes shall be fast to implement and deploy.

3. Complete documentation, meaning that each function, method, class, package, etc.
shall have a comment. The documentation shall also include how to run and deploy
the code.

4. Good code quality. This includes linters (such as flake8 for Python) which check code
quality, tests using pytest and manual reviews before code is merged in Gitlab.

2Passwords, certificates etc…are securely stored by the LRZ.
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5. Code shall be reasonably performant, efficient and shall perform operations in near-real
time.

6. Deployment shall be easily reproducible and upgradeable (Kubernetes and Docker).
This means the number of manual steps the programmer needs to deploy a new version
of the code shall be as low as possible. Fewer manual steps while upgrading and
recreating the deployment means less work, but also means less possibility for errors.

7. Setting up a development environment shall be easy. This means installing the required
tools and getting the code to run for development shall take at most 2 hours, not
including time to download software.

8. Easy debuggability, with good logs. This means that the important functions shall
created detailed logs. These logs shall include a timestamp and detailed information
about the current state and the operation is being performed.

9. Implementation of change requests from stakeholder shall occur in a timely manner,
depending on the nature of the changes requested.

10. Sending incorrect data shall not crash the application or cause silent problems.

3.6 Prioritization of Requirements
This section discusses how the various requirements should be prioritized with respect to the
wishes of the stakeholders and other constraints, such as time. There are some requirements
that can be relaxed or have lower priority, such as:

1. Speed of the code: as long as the speed is sufficient for usability, meaning the user
does not have to wait more than 3 seconds (worst case), optimization of the code takes
lower priority, including items such as close-to-real time (Subsection 3.5.2).

2. Performance of the code: Since the number of users currently is low, the kubernetes
deployment does not need to include multiple replicas of the images or large amounts
of resources.

3. As described in Subsection 3.2.1, adding a priority system to scheduling is a stretch
goal, and so has a lower priority.

4. Also lower priority is “strictly clean” code, as described in Subsection 3.4.2. The code
shall include good documentation and be understandable, but code organization and
naming has a lower priority if the functionality is clear.

5. Another lower priority requirement concerns extra (“nice to have”) features, which
might enable easier or faster use of certain aspects, but are not part of core function-
ality.

The requirements that are the most important are the stability and correctness of the code.
This means that the deployed code does not crash from user input and shall not crash from
bugs. If some bugs does take down the system, Kubernetes restarts the containers, but bugs
should not cause constant crashing, especially if the crash is right after startup. Correctness
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of the code is a central aspect. Especially requirements in scheduling (Section 3.2) are crucial,
because the scheduler always has to function correctly. Also, user input and data sent to
FAIM and other instruments is always checked for completeness, syntactical validity of the
JSON, and logic requirements described in Appendix Section 1. If these aspects are not
prioritized, then the usefulness for stakeholders and users is low, because they cannot use
the code effectively. Also, bugs and incorrect functionality mean frustration for users and
less incentive to use the new system. The goal of the requirements are higher productivity
for the users, lower costs, flexibility, easy of use, number of features, and faster development
of new features.
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4 Scheduling Software

4.1 Selection of a Scheduling System Matching our Requirements
There are a few different types of scheduling software, such as OR-Tools, NASA’s EUROPA
or IBM’s “ILOG CPLEX Optimization Studio”, among others, each with different trade-
offs [BBD+12, DCT19, SFS+, SFS+14, RPB13]. This section discusses how the various
requirements can be met by different software and which was chosen for this implementation.

4.1.1 Two Scheduling Systems Evaluated in Depth

For the implementation of our system, two scheduling software libraries were evaluated
in depth: OR-Tools and EUROPA, which were chosen because they are both opensource
and have seen a lot of real world application [BBD+12, NAS, DCT19, RPB13]. Table 4.1
compares these libraries by their key characteristics. The information is sourced from the
OR-Tools website [PF] and two papers describing EUROPA’s implementation [BBD+12,
RPB13].

Table 4.1: Comparison of Scheduling Software

# OR-Tools EUROPA

Type General Optimization software, can be used
for scheduling

Planning software, can be used
for planning and scheduling

Solver Multiple open source and commercial solvers
can be used; includes a built-in SAT Solver

Custom solver algorithms and
engines for rules and constraints

Creator Made by Google Made by NASA
License Opensource (Apache License 2.0) Opensource (NASA Open Source

Agreement)
Language
Bindingsa

C++, Python, C#, and Java Java and C++

Constraint
languageb

Python NDDL

a Language bindings describe which programming languages can natively interact with the
library.
b Constraint language describes the language in which the constraints are written, which
might be different from the binding language.
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4.1.2 Requirements for the Scheduler
Because the different kinds of scheduling software have different capabilities, we have deter-
mined multiple requirements, as described in Section 3.2 and Appendix Section 1 (specific
to FAIM), to ensure that the scheduler works well with our use case. There are also certain
requirements that any scheduler under consideration needs to fulfill, which are not directly
relevant to the performance of the actual scheduling.

One important general requirement is that the scheduler should be easy to embed/work
with in Python. Because OR-Tools has a Python version as a package, this means calling
OR-Tools is a simple as calling any other library in Python. However, EUROPA is written
in C++ and has Java bindings, which means communication with the Python code directly
is more difficult, without writing bindings or having some other interoperability method.

Another general requirement is, that the scheduler should be fast to create and update
schedules. Both OR-Tools and EUROPA are written in C++, which allows for a lot of low
level optimizations and their execution speed is quite optimized as measured by multiple
benchmarks [SFS+, BBD+12, DCT19, RPB13].

The third general requirement is that the scheduler should be easy to use and extend.
For OR-Tools, there exists good documentation and community forums where one can ask
questions. Also, the number of people using OR-Tools means that there is a larger user-
base of people and solutions to problems. For EUROPA, the tool includes many more
features, because it does “planning, scheduling and constraint reasoning” [BBD+12]. Plan-
ning is used to describe how and in what order instruments, vehicles and other “actors”
should do actions, such as moving somewhere or manipulating objects. This planning is
then subject to constraints like the amount of fuel or size of a location. Constraints can
be used for both planning and scheduling. While this is very useful for NASA’s applica-
tions, such as controlling a spacecraft or a rover [BBD+12, Chapter 6], there is a number of
features that are not needed in AlpEnDAC and make working with EUROPA more daunt-
ing. EUROPA also uses a custom language called NDDL to describe the models used for
scheduling. Although this language is an extension to a widely used planning language
known as “PDDL” [GHK+98], it differs in multiple aspects, and so some concepts between
the languages are different [BBD+12, Section 2.1]. These language differences make the
ease-of-use for future implementers more difficult, as there is smaller amount of available
documentation, examples and experienced programmers for NDDL. Another difference that
makes EUROPA more difficult to pick up and use, is that the language also only has a plugin
for Eclipse, whereas the code for scheduling with OR-Tools is written directly in Python,
meaning a lot more tooling and IDEs are available.

4.1.2.1 Decision for using OR-Tools

Although both OR-Tools and EUROPA can fulfill the requirements mentioned above, the
easy embed-ability of OR-Tools and the fact that it has better usability for our use case,
means that OR-Tools was selected as the scheduler for our implementation.

4.2 Performance Metrics
There are many performance metrics for schedulers, as described in Section 2.4. In terms of
execution speed, both OR-Tools and EUROPA are both quite performant [RPB13, SFS+].
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OR-Tools has even won gold medals in the MiniZinc Challenge [SFS+], which benchmarks
the quality and speed of solving various constraint programming problems [SFS+14, DCT19].

However, due to the number of events per night being quite small and static, execution
speed is of lower priority. Also, since adding/removing events is currently done in a linear
queue and non-scheduled events get deleted, this means any impact a new event has is
quite minimal, because it might cause some removals and possibly the recreation of the
filler events. A queue also means that the hardware running the scheduler does not suffer
performance problems when a lot of users try to modify events at the same time (the so
called “thundering herd”). Another performance benefit is because the frontend is decoupled
from the backend, the frontend can multiplex future backends for other instruments, which
means their schedulers can work concurrently. Although future backends could include more
dynamic scheduling (Section 2.4) which would require a moderate amount more computing
power, the efficiency of both schedulers and the powerful AlpEnDAC Kubernetes servers do
not make this a concern.

The other performance aspect is the “quality” of a schedule the scheduler can generate.
Quality encompasses both correctness, i.e., how well the constraints are upheld, and how
well the scheduler can reach the specified objective(s), e.g., minimizing the execution time
for a job. Performance in terms of quality can be easy to measure in some cases, because
if an “optimal” solution exists, i.e., a solution which is provably the best solution for the
specified objective(s), then as long as all constraints are specified and enforced correctly, this
solution has the highest “quality”.

For OR-Tools and EUROPA the correctness aspect is not a problem, as both being con-
straint programming based schedulers means that if a “feasible” scheduling solution is found,
it is guaranteed to satisfy all specified constraints [RPB13, OR-a].

However, measuring how well the scheduler can solve constraint optimization problems to
meet the specified objective(s) is much harder. For constraint optimization problems multiple
solutions can be found, some of which are not optimal (known as “feasible”) [SAT, RPB13].
Proving which solution is the optimal solution can be harder and more computationally
expensive [Ros06]. Furthermore, the solver might also not find a solution or, if the problem
requires a lot of resources to solve, the computation might be cancelled before completing,
which means it is not known if a solution exists or not [SAT, Ros06].

In our use-case, the provably (calculated by OR-Tools) optimal solution, i.e., the solution
which satisfies the goal of maximum cumulative duration, always exists. A feasible solution,
i.e., where at least one solution which satisfies all constraints, always exists because all events
being optional means an empty schedule satisfies all constraints. The proof for the optimality
is that, as long as events conforming to the constraints are available, the maximization goal
forces the scheduler to add these events so that the cumulative duration is maximized. OR-
Tools is also able to prove that a solution is optimal relatively quickly and easily, because
the complexity of the model is low enough that the solver can evaluate all possible solutions
in a reasonable time.

4.3 Implementation of the Scheduler
This section describes how OR-Tools was used in the AlpEnDAC scheduler, including tech-
nical explanations, design decisions and trade-offs.

One advantage of OR-Tools is that it has a built-in Interval object, which can encode an
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event with start, end and duration times. In this scheduler implementation, when events do
not fit in the schedule or create a suboptimal scheduler, they are dropped by the scheduler
and are not included in the schedule. OR-Tools has a built-in data type that makes this
behavior easy to implement. Known as an OptionalInterval object, it is the same as an
Interval object, but also includes an extra is_present Boolean variable. OR-Tools SAT
solver can then include/exclude these Intervals automatically by changing the variable,
depending on if they fulfill the goal(s) while conforming to the specified constraints [Opt].
When the solver has finished calculating, all OptionalInterval objects where the boolean
variable is True are returned as the schedule.

There are multiple requirements and goals for the scheduler. Because of time and com-
plexity constraints, two versions of the scheduler were created in this work. The first version
of the scheduler (known as “v1”), which is currently deployed, does not include priority
as part of its constraints. This is because adding priority in the scheduler code and the
system adds complexity to implementation and usage, and priority-based scheduling is less
important when the number of users is very small. The second version (known as “v2”),
which implements the stretch goal, as described in Item 5 (Subsection 3.2.1), does include
priority calculations when creating the schedule. This version exists and is fully functional,
but has not been deployed because of time constraints. It is part of the scheduler repository
in Gitlab and has tests that confirm the full functionality.

For all versions, there shall be no overlap of the events. Events cannot overlap, because
the FAIM camera can only take one picture at a time, so parallel operation is not possible.
If an event that could be added does overlap with another, then a decision made on which
event should be kept and which to discard.

For “v1”, the goal for the scheduler is maximum cumulative “user-event” duration, i.e., the
sum of the lengths of all user events that are included should be maximized. There are also
similar possible implementations e.g., to minimize the spaces between events or to maximize
the number of events. This might mean that the total duration of user requested events
might be lower depending on the distribution of the events, but the number of events that
are scheduled might be higher. Although there are tradeoffs between each implementation,
maximum duration was chosen because it allows for the most amount of time that the
instrument is taking “real” pictures (pictures requested by a user). As described in Item 1
(Subsection 3.2.1), gaps in the schedule are filled with scan events so that the camera spends
most of its time taking pictures. However, while these scan events are useful, time spent
taking pictures for users have priority. These filler scan events are also not included in the
cumulative duration to be maximized by the scheduler.

For “v2”, maximum “user-event” duration is the secondary goal. The primary goal is that
events with the highest priority are included first, and lower priority events are only included
if they do not inhibit higher priority events. In this version, each user of FAIM is assigned
a priority level of 1-5, with 5 being the highest. This allows, e.g., users from the DLR to
have priority in taking pictures over users from other research facilities. The downside of
this approach is that if events overlap, the higher priority event always gets selected, even if
this means that the duration suffers. This means that there might be less time spent taking
pictures for users overall, but for higher priority users they are more likely to get the images
they have requested.

There are multiple steps the scheduler runs through to create a new schedule, and then
a high level explanation of the steps is as follows. This code is inspired by the job shop
example code [OR-b] from OR-Tools, which was heavily modified for our implementation.
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The first step is to create the OR-Tools variables, that are needed for the solver, from
the Event Types (scan and static) and add them to the model. The second step is to
call model.AddNoOverlap, which adds each event to the model and automatically guar-
antees no overlap in the resulting schedule. The third step is to add a constraint that
the start and end of each event is inside the horizon1, meaning that events will only be
accepted if they are between dusk and dawn for the same day as the event. The next
step is adding the goal(s) for scheduler version “v1” or “v2” (as described above). This
is done by adding more constraints and a “goal function”, such as model.Maximize(sum
↪→ (duration_of_included_tasks)), which tries to maximize the cumulative sum of all
included tasks. The next step is to instantiate a solver, e.g., OR-Tools’ “CP-SAT Solver”,
which will solve the model. The solver will return a status type, which describes if the
model could be solved, and if the solution is optimal. For our implementation, the solver
will always return OPTIMAL, if the model is syntactically valid (i.e., MODEL_INVALID is not
returned). This is because all events are set as optional, so an optimal schedule could also
be an empty schedule (see Section 2.2). The last step is to get the new schedule from the
solver, and convert it back to the internal data types used for the JSON, and to update the
database.

1See definition in Section 2.5.
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4.4 An Example Schedule

Figure 4.1 shows a series of 50 randomly generated static events. These static events were
generated to occur between the 14.6.2021 at 11pm and the 15.6.2021 at 3am, each having a
random duration of between 1 and 500 seconds. Random scan events were not generated,
as the same principles apply as to static events for illustration purposes.

For each figure, the x axis shows the date and time in 30 minute increments. The y axis
contains the first 8 characters2 of the event’s UUID4. The length of each event is represented
by a bar, which represents its duration.
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Figure 4.1: 50 randomly generated static events, sorted by their starting time.

Figure 4.2 shows the 24 static events that remain after the 50 events from Figure 4.1
have been scheduled. The cumulative duration of this subset is 7, 323 seconds, i.e., 2 hours,
2 minutes and 3 seconds out of a total of 4 possible hours.

Filling the schedule with scan events increases the cumulative duration of all events to
13, 227 seconds, i.e., 3 hours, 40 minutes and 27 seconds, which means the camera spends

28 was chosen, because it provides enough difference so there is little chance of overlap, but it is not as long
as to make the image labels too long.

24



4.4 An Example Schedule
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Figure 4.2: The subset of events from Figure 4.1 after being scheduled. The red lines with
the label “Gaps” represent all instances in the schedule where no event exists,
i.e., where the instrument is idle.
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8.14% (19 minutes and 33 seconds) idle in this example. This is a reduction of idle time of
5, 904 seconds, which means the instrument is idle for 1 hour, 28 minutes and 34 less than
before. The reason this value is not smaller is that each scan event is 123 seconds, so any
gaps in the schedule smaller than this can’t be filled. The events were generated at random,
which means the possible schedules which can be calculated and how well any gaps can be
filled is defined by the “luck of the draw”.

Figure 4.3 illustrates how much of the schedule is filled with scan events, which can be
identified by the label “Filler Scan” on the x axis. All scan events were merged into one
line in the figure to make visualization easier, as a total of 48 events would make the image
larger and less straightforward. The figure also visualizes how much filling possible gaps in
the schedule dramatically decreases the amount of idle time when compared to the “Gaps”
in Figure 4.1.

14 23:00 14 23:30 15 00:00 15 00:30 15 01:00 15 01:30 15 02:00 15 02:30 15 03:00
Horizon (in 30 minute increments)
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8e2dd6b5
9c35e42a
0c66e993
Filler Scan

Gaps

Ev
en

t I
D

Event
48 Filler Scan Events
Gaps in the Schedule (=No Event Scheduled)

Figure 4.3: The schedule from Figure 4.2, where any possible gaps have been filled by scan
events. The red lines with the label “Gaps” represent all the gaps in the schedule,
where the amount of space is to low to fit a scan event.
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5 REST-API and Implementation

In this chapter, we describe the implementation of the OOD system, for which the require-
ments were specified in Chapter 3. The description includes both the REST-API as our
external interface, and the scheduler. The entire source code is provided separately and part
of this work.

5.1 Structure
The structure of the OOD REST-API and its interfaces is split into 3 parts: frontend,
scheduling backend and “sidecar” backend. The frontend is access controlled with an API
key, which is enforced by Kong (Figure 5.1). All the code is run in Docker images on LRZ’s
Kubernetes cluster, and all communication between the various parts is run and controlled
inside the cluster. Everything inside the Kubernetes cluster is shown in Figure 5.1 inside the
light blue and green rectangles1. The use of PostgreSQL [Theb] to store the events makes
working with and updating schedules much easier than using files directly. It is also a well
known database that is used in a lot of applications, including in other AlpEnDAC projects.

The first part of the structures is the frontend, where users can see a schedule, a list of
events and which instruments exist. Users with the correct permissions are also able to
submit events to be scheduled and delete events that exist in the database. The frontend
can be seen in Figure 5.1 inside the green rectangle. It includes the Docker image OOD-API,
which receives requests for various endpoints from the AlpEnDAC UI, which is what the
users interact with directly. The frontend is also responsible for communication with the
instruments.

The second and third parts are the scheduling backend and the “sidecar” backend. The
scheduling backend, known as the “main” scheduler component, can be seen in Figure 5.1
labeled as OOD-Scheduler Main. This part is responsible for actual scheduling operations,
by receiving add or delete requests for events from the frontend (which are sent over Apache
Kafka [Kafa]), and then adjusting the schedule accordingly. This includes adding or deleting
events from the PostgreSQL database, and updating the schedule with new filler scan events,
as described in Subsection 3.2.1, Item 2. Delete requests are always fulfilled, and no message
is sent back over Kafka. Add requests are processed by the scheduler, and a message is sent
back over Kafka whether the event is accepted into the schedule or rejected. OOD-API then
relays this information back to the user. Kafka was chosen for this, because it enables more
durable (i.e., less chance of data getting lost in transit) and scalable communication between
the frontend and backend.

The “sidecar” backend/component is responsible for communicating with the OOD-API and
the PostgreSQL database. It can be seen in Figure 5.1 labeled as OOD-Scheduler Sidecar.
It provides “internal” URLs that the OOD-API calls, for example /schedule calls an internal
/schedule URL. The sidecar then reads the events for the current date from the database,

1The dark blue logo at the bottom left of the figure is the Kubernetes logo
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Figure 5.1: A more detailed view of the implemented architecture of the AlpEnDAC operat-
ing on demand system, modified from [Gö21]. The light blue rectangle contains
the backends and the green rectangle contains the frontend.28



5.1 Structure

makes sure that the filler scan events are up-to-date, and then sends the full JSON schedule
to OOD-API.

The splitting up of the code and endpoints into 2 Docker images allows for a better
separation of concerns. While the OOD-API is directly connected to the outside world through
Kong, the sidecar only communicates inside Kubernetes, which allows for better security.
Another benefit is that changes to the scheduler internals (database, tweaks to OR-Tools
usage, etc.), that do not affect the user API, or the communication between the frontend
and the backend, can be made without a full redeployment. An illustrative example of
this, is that the OOD-API Docker image had an uptime of 77 days, before being updated to a
version with new functionality, while during this timeframe the OOD-Scheduler images where
changed multiple times without a loss of functionality. It also allows for better future scaling,
because the number of images that communicate directly to the database or are changing
the schedule can be changed independently of the number of front-end (user-facing) Docker
images.

29



5 REST-API and Implementation

5.2 REST-API endpoints

Table 5.1: REST-API endpoints for the OOD API.

URLa HTTP
Method

Request
Datab

Response
Datab

Comments

/v1/instrument GET - Ids, types
and
attributes
of all in-
struments

Currently contains only the FAIM
instrument. The additional
attributes are attributes relevant
to a specific instrument

/v1/instrument/
<id>/schedule

GET - Schedule
for current
day

Includes filler scan events, see
Item 2 (Subsection 3.2.1)

/v1/instrument/
<id>/event

GET - List of all
scheduled
events in
the
database

Includes scheduled events from the
past

/v1/instrument/
<id>/event

POST Object,
with a
single
event

status of
Added or
Rejected

The user sends an event to the
scheduler, which tries to schedule
this event, and the API returns if
the event was added to the
schedule

/v1/instrument/
<id>/event

DELETE Object
with id

status of
Removed

The user sends which event they
want deleted, by providing the
unique id which identifies the
event

a <id> refers to a UUID4 encoded id value, which uniquely identifies each instrument.
b Data is always a JSON:API style document. Events are always of scan and static event
type (FAIM specific, see Section 2.5).

5.3 Frontend

The REST-API is used to request the use of resources, see all events which are active, get a
daily schedule for each instrument and receive information about the instruments themselves.
A description of the REST-API endpoints is shown in Table 5.1. OpenAPI is used as a user-
facing interface to see and work with the API. All OOD URLs have /v1/ as part of the
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URL, to differentiate between the endpoints if the interfaces change, e.g., if version 2 of the
scheduler2 were implemented, /v2/ would be used.

Data exchange is done with multiple different JSON documents following the JSON:API
format. This means that every data JSON:API document contains a UUID4 id, a type
describing what the document contains (e.g., "static" for a static event) and attributes,
which contain any additional data. There is another JSON:API “type” which might be
returned, the errors response type. This gets returned if errors occur calling any URL, e.g.,
validation of the input failed or Kafka was unavailable. An error return also sets an HTTP
error code that is not 200, depending on what the problem was (see Appendix Section 2).
The documents for events are scan and static events, as defined in Section 2.5. They follow
all the requirements and formats which are described in Appendix Section 1. An example
can be seen in Appendix Section 3.

Although the output format is the same for the schedule and event endpoints, the
returned data is different. The schedule URL returns the schedule for the current day,
which is defined as all events that occur between tonight dusk and tomorrow dawn UTC.
These times are calculated using the Astral [Ken] library. This endpoint is currently also
specifically tailored toward FAIM.

The event URL, on the other hand, returns all events in the database that are or were
scheduled. This means it includes events in the past, which were part of a past schedule.

When deletion of an event is requested, the scheduler in the backend (Section 5.4) recal-
culates the schedule after each delete, which might have cascading changes for the rest of
the schedule.

5.4 Scheduling Backend
The backend takes the requests for use of the instrument from the frontend and tries to
create an optimal schedule that maximizes the cumulative duration of the instrument usage
while fulfilling the other requirements as described in Section 3.2.

When a request to add an event to the schedule comes from frontend, it is sent as a
JSON document to the scheduling backend using Kafka. This can be seen in Figure 5.1,
where the scheduler-main Docker image polls the Kafka queue for new events. When a
new event is received in the queue, the scheduler pulls in all currently scheduled events from
the PostgreSQL database, which occur during the same night (night A) as the new event.
The scheduler then tries to add the event into the schedule for night A by trying to create
an updated schedule using OR-Tools. A schedule is returned from OR-Tools, which might
be updated and include the new event, or it is the same schedule as before3. If the new
event is scheduled, it might mean removing other, less “optimal” (here: shorter) events out
of the schedule. In version 2 of the scheduler, events with a lower priority might be removed
instead.

If the request was accepted, i.e., the new event can be scheduled, then an “accepted”
message is sent back to the frontend as JSON using Kafka. The frontend then returns this
data back to the user, as shown in Figure 5.1. Concurrently, the new event is written to the
database and other events that no longer fit in the schedule are deleted from the database.

2as described in Item 5 (Subsection 3.2.1)
3The schedule can be the same, because OR-Tools’ solver enables stable solutions. See Section 4.2 and

Section 2.4.
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On the other hand, if the event can’t be scheduled, then a “rejected” message is sent back
to the frontend, which the frontend returns to the user with an HTTP code of 409 (see
Appendix Section 2) to indicate failure. The database stays the same as before.

5.5 Instrument Backend
This backend provides a REST-API which is read by the instruments themselves, to see
what they have to do. The backend is run by the OOD-Scheduler Sidecar Docker image
(Figure 5.1), which communicates between the PostgreSQL database, which contains the
schedule and the instrument through the OOD-API frontend.

The returned data from the backend doesn’t contain exact instructions, i.e., the steps that
need to be fulfilled for an instrument to take a measurement or move around, but only the
desired actions, e.g., take a picture at 10:45 am for 10 seconds at angle 20 deg. If and how
these desired actions are actually run is controlled and implemented by the owners of the
instruments themselves. The reason not to include the actual execution steps for the schedule
is because the instruments are large and expensive, which means stakeholders do not want
to entrust software-driven instrument control to a third party. The separation of concerns as
we have implemented them here makes it possible to program a largely instrument-agnostic
system.

For FAIM, the software running the instrument downloads a nightly schedule from the
/schedule endpoint once at 15:00 UTC and then executes the events in the schedule. After
downloading, the computer controlling the FAIM instrument converts the JSON data to a
different plain text format used to control the instrument, where the information for one
event is one line of text. The computer then runs these commands line by line during the
night. It checks the start timestamp and does the next instruction when the current time in
UTC is the same as the start timestamp for the next event. The images taken by the FAIM
camera are then saved and also sent back to the OOD system’s storage system, which stores
all the images, organized by event ids, for future use by others.
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6.1 Performance of System with Regards to the Requirements
This section compares and contrasts how many of the requirements from stakeholders were
met, and how close the actual system came to the requirements, as defined in Chapter 3.
It also includes the reasoning behind some design and architecture decisions and why some
requirements or their implementation where changed.

6.1.1 Performance with Respect to Scheduling
This section describes how well the system able to schedule, and what its capabilities are
(priority, different goals of the scheduler, …).

The scheduler meets all requirements set in Subsection 3.2.1. It is able to fill out the
night with as many events as possible, and for all gaps that are large enough, generated scan
events are included. These scan events are written into a separate table in the database,
which means there is a separation between “real” and generated events. The stretch goal was
partially met: a version that includes scheduling with priority. A fully functional implemen-
tation is included in the repository, however it has not yet been integrated into production.
Easy embed-ability with Python and the rest of the code was achieved, because OR-Tools
was used, which has Python bindings and a Python package. The scheduler also makes
sure that events for a specified date only take place between dawn and dusk by adding a
constraint to the OR-Tools’ model.

The requirements in Appendix Section 1 were met. All dates and times for events are in
UTC. OR-Tools itself uses relative times for the horizon, as described in Section 2.2. All
other aspects of the scheduler use and enforce UTC.

The scheduler almost completely meets the non-functional requirements as described in
Subsection 3.2.2, with the only requirement which was not completely met being Item 1.
It was not fully met because the complete process of creating new schedules, starting when
the user sends the JSON request and ending when they receive a JSON response, takes
approximately 1–2 seconds, but can sometimes spike up to 3 seconds. This end-to-end time
can vary quite a bit, with values as low as 0.8 seconds being observed. However, the highest
amount of time is lost to communication latency sending and receiving data between the
frontend and backend using Kafka. The actual scheduling, where an old schedule and a
possible new event are input to OR-Tools and a new schedule is returned to the scheduler
system, is very fast and takes less than two seconds. The scheduler only accepts correct data
and rejects malformed or otherwise unschedule-able data. It also always creates a schedule
that fulfills all the requirements, and can always be executed by the instruments, owing to
the use of the OR-Tools constraint system. All events are set as optional, which means the
scheduler does not need to include any events. In fact, because even an empty schedule
is an optimal solution if no events meet the correct criteria, this means that a schedule is
always created and the scheduler can run without crashing or running indefinitely. In v1
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of the scheduler, the scheduler always tries to create the most optimal schedule as defined
in Item 5 (Subsection 3.2.1). In v2 of the scheduler, where the priority is also taken into
consideration, the goal from Item 5 (Subsection 3.2.1) is the secondary goal. The primary
goal is, that if events overlap, the event with the highest priority should be chosen, even if
the sum of the duration is lower as a result.

6.1.2 Performance with Respect to Interface/API Requirements
All performance requirements as described in Section 3.3 were met. Because there was
already existing infrastructure on alpendac.eu, OpenAPI and Kong were already deployed,
which made it easier for all the functional requirements to be met.

In the beginning, before the first deployment to production, the APIs were changed a
few times, during multiple discussions with P. Hannawald from the DLR, with respect to P.
Hannawald’s wishes, the goals of the LRZ and the author [Han21a]. This does not conflict
with the requirement from Item 3 (Subsection 3.3.1), because the changes to the APIs
occurred before the first deployment into production. After the deployment into production,
there were only minimal functional changes, which were confined to which HTTP return codes
were used for DELETE and POST operations. All other changes were bugfixes or fixes to enforce
stricter validation of user input.

The main changes to the APIs before the first production deployment included switching
what type of event values where returned from /v1/instruments/<instrument_id>/schedule
and adding /v1/instruments/<instrument_id>/event. The first draft version included
what was known as simple events, which were the only events returned from /schedule.
They represented the “static” event concept, i.e., one orientation of the camera per event (one
azimuth and one zenith value), and were therefore similar to the current static events.
However, representing only “static” events meant that what is now one scan event had to
be converted by being split into 35 simple events (which is the number of orientations for
one scan) to then be returned by /schedule. This quickly became a big number of JSON
events that need to be created and returned, especially when all possible gaps need to be
filled with “scan” events. At 8 hours between dusk and dawn1, that would mean, in the
case with no events other than “scan” events, a total of 234 “scan” events per night.2. At 35
images (one per orientation) and therefore simple events per “scan” event, that equates to
234 ∗ 35 = 8, 190 simple events per night. This was a huge number of JSON objects, which
made both performance and readability suffer. Performance, because the large number of
objects meant big files and a longer time to calculate and later ingest the values. Read-
ability, because trying to look at 8, 190 JSON objects, instead of the current equivalent of
234, became very unwieldy, especially when looking for problems, or later for trying to get
a sense of how images should be grouped.

These problems meant that the current system returns scan and static events from
both endpoints. Also changed was that instead of including the duration in the output of
a simple event, the number of photos each static event should take was included instead.
The duration value was removed, as number of photos was more useful for static events,
while having similar functionality (0.5s = 1 photo). Duration was also useless for scan
events, which always have the same duration. P. Hannawald changed his code that operates
the camera to use these two data types, which improved readability, understandability and

1a reasonable value, but can vary wildly depending on the time of the year
28 h = 28, 800 s with 123 s per scan event means floor(28, 800 s/123 s) = 234 events
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performance from both ends. Readability, because the amount of events sent are much
smaller and can be skimmed more easily. Understandability, because fewer events means it
is easier to get an overview compared to before, where trying to see which simple events
would correspond to each “scan” or “static” event was quite unwieldy. Performance, because
the large amounts of JSON that needed to be generated and sent took a large amount of
resources, and might have required some architectural changes, such as writing parts of the
code in another language for better performance.

Furthermore, the amount of commands sent to the camera are much fewer. This is because
the commands sent to the camera are line based (see Section 5.5), which meant that, for the
old API, each individual photo was its own line, which made for much worse readability and
understandability. The new API means that individual scan photos are grouped as one line
and as one event.

6.1.3 Performance with Respect to Sustainability and Reusability Requirements

Almost all requirements described in Section 3.4 have been met. The only requirement which
was partially met was Item 1 in Subsection 3.4.1, all other requirements in both subsections
were completely met. Although the software is mostly up-to-date, some third-party libraries
have released new major versions with breaking changes and were not updated to these new
major versions.

As required in Item 6 (Subsection 3.4.1), the scheduling implementation is easy to extend,
because it itself has no validation for the events except the basics required of almost any
schedule (events inside horizon, no overlap etc.). Validation of events specific to FAIM, as
described in Appendix Section 1, is done by functions in models.py. This separation of con-
cerns enables the scheduler to be reused more easily, because any instrument-specific logic
is dealt with before it is sent to the OR-Tools scheduler. It also means adding new instru-
ments consists mainly of adding new models with new validation, and the actual scheduler
implementation only needs very little if any changes. The only changes needed are to adapt
the scheduler are to extract the relevant data from the new models (start and end times,
and a unique id for each event), assuming the goal, maximum coverage of the horizon, is
the same. If the goal is different, the code is written so that adding, removing or changing
constraints is relatively easy and the rest of the scheduling framework can be reused, which
fulfills the requirement in Item 7 (Subsection 3.4.1).

In the Gitlab repositories, code is only merged and deployed when all steps are completed
successfully in Gitlab CI. This means that all functions, classes and modules have correctly
formatted comments, enforced by a CI job running pydocstyle. Furthermore, flake8 is run
by the CI which enforces code formatting and also checks for simple errors. All code and
code documentation is stored on the LRZ Gitlab server.

All the non-functional requirements (Subsection 3.4.2) have been met. The documentation
includes how to start working on new code easily, by providing instructions and code to set
up and run all the required packages and Docker images needed. It also includes how to
extend the system. The code is well organized into files and folders, depending on their
functionality and where else the code might be needed. Well organized code also eliminates
import cycles, e.g., 2 files import other libraries and also each other, what can cause code
issues. The names for functions, classes, etc. are well-chosen and accurately describe their
functionality.
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6.1.4 Performance with Respect to System/API Requirements

All requirements as described in Subsection 3.5.1 have been met.
Kubernetes allows a lot of the requirements described in the section to be met without

much configuration. This is because Kubernetes automatically restarts containers when they
crash, and because deployment of new Docker images means the old images are deleted, the
“ephemeral” aspect is guaranteed. Using PostgreSQL also means that crashes imply no data
corruption or loss in the database, because of the ACID guarantees. While crashed images
might lead to an event getting lost after being sent but not yet written to the database,
all accepted events in the database are secure. However, the user is able to see if the event
was successfully added if they get back an “accepted” message. All fatal problems before
this message is sent cause the event to not be accepted, and the HTTP return code of 504
reflects this. AlpEnDAC’s Kubernetes cluster is also able to connect to LRZ’s Network
Attached Storage (NAS), which allows secure storage of the database files, including regular
and automatic backups. The checks listed in Appendix Section 1, which are necessary for the
implementation of the system to be correct and usable by the DLR, have been completely
implemented.

Almost all requirements described in Subsection 3.5.2 have been met or exceeded. Only
Item 8 was not fully met, because some logging statements do not have direct context and are
somewhat terse. The quality of the code is high, enforced by Gitlab’s CI and merge request
systems, where any new changes will only been merged if all stages (tests/linters/builds)
finish without errors. Gitlab CI also automatically creates new Docker images from the
code after it is approved and merged, which eliminates both work and the possibility of
images being out of date or created incorrectly. Although bugs cannot be avoided, the
system has been created so that bugs should not cause silent problems, crashes mean that
the system will be restarted automatically, and incorrect data will not cause crashes. Docker
and docker compose allow for a development environment to be set up easily, because all the
relevant programs and code can be run with these two systems. Deployment is very simple
using Kubernetes, where just a kubectl apply -f k8s/*.yaml call is needed. This means
deployment is both easily reproducible and fast, and upgrading is easy, because Kubernetes
takes care of the upgrade process, and automatically pulls new Docker images created by
Gitlab’s CI and starts them.

6.2 Usability and Stakeholder Feedback
In this section, we describe how well the system works and is usable according to the various
stakeholders, such as the DLR and LRZ.
The feedback from Patrick Hannawald (DLR) is:

The communication with you regarding the user requirements worked wonder-
fully. In several iterations you adapted the API in such a way that on the one
hand it is very general purpose, but at the same time meets the requirements for
the specific test instrument (FAIM). At the same time, you modified my existing
R script so that it works perfectly with the changed API. This helped me a lot.
In my view, the API can also be used very well and easily in the future.

[Han21c]
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The feedback from the LRZ AlpEnDAC team is:

The APIs and scheduling system developed match the AlpEnDAC architecture
very well. They have enabled the AlpEnDAC team to reach Operating-on-
Demand milestones in the project and comprehensively fulfill the requirements
of our instrument owners. Importantly, the developed system with its flexible
architecture is an excellent building block for future AlpEnDAC services.

[LRZ22]
This positive feedback reassures us in our belief that system is based on correct design

decisions and in our assessment that it fulfills all relevant requirements well.
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7 Conclusion and Outlook
This work aimed to create a modern framework and REST-API for the AlpEnDAC’s OOD
work package, which enables management of data and jobs for various instruments in the
project. The goal of this work was reached for the FAIM instrument, where the REST-
API sees real-world usage and is used for scheduling image capture events each day. Jobs
can be scheduled for the FAIM instrument, and the images taken from the camera are
now additionally stored on the AlpEnDAC servers. The REST-API also has an OpenAPI
interface, which makes onboarding new users easier and allows integrations to be created
without in-depth knowledge, just by using the documentation provided by the OpenAPI.

Our work is based on an in-depth requirements analysis with respect to scheduling,
APIs/interfaces, and the system and support structures needed to create high quality func-
tionality and code. The theoretical aspects of scheduling have been illuminated, which will
provide guidance for future changes or maintenance of the scheduler. A widely used schedul-
ing framework (OR-Tools) has been chosen as the central component, and the backend and
frontend components have been implemented as required. The entire system and framework
is based on state-of-the-art technology, including widely-used platforms such as Kafka and
PostgreSQL. Modern CI/CD and deployment mechanisms (containerisation, Kubernetes)
and appropriate Source Code Management/code documentation systems are used.

There are multiple future projects that could be based off of this work. Some would be
more OOD or FAIM specific, i.e., adding more instruments, their constraints and attributes,
or different ways of specifying when events should occur. Another future possibility would be
using this system for other projects/groups which need scheduling for their instruments e.g.,
other institutions which are part of AlpEnDAC, but are not part of the OOD project. To this
end, we have made the scheduler largely independent of any FAIM specific code. Therefore,
the aim of using our framework for other instruments requires very few if any fundamental
changes. For a new instrument, only very few changes would be needed. One change for a
new instrument would be modifying the Flask [Pal] server code to return different data when
URLs are called with new instrument_ids. The other change would be creating new JSON
data models for the new instruments which include their attributes and any specific data
constraints. The rest of the code can be easily reused and modified, especially the scheduler
and any code interacting with PostgreSQL or Kafka. A relatively easy future improvement
would be to get version two of the scheduler into a deployable state.

Further possible future work for the scheduler is to have people submit preferences in
terms of if the first event slot does not work, then use the second etc. OR-Tools allows
flexibility for such work to occur, and there might already be existing strategies for solving
these problems, which just need to be added to the code. Other future improvements for
the scheduler could include recurring events with custom repetition dates and preferences,
or to extend the types of constraints considered, e.g., weather-related constraints.

We are confident that the system provided will thus be one of the key components for
AlpEnDAC to provide new, innovative services, and to constantly adapt them to the needs
of the community.
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Appendix

1 FAIM Specific Checks
1. Timezone must be UTC.

2. Date and time must be in the ISO8601 or the RFC33391 format, with the Z suffix as
the timezone offset for UTC, instead of +00:00, as allowed by RFC3339 [KN02].

3. End time must be after start time.

4. Specific checks for static events (see Section 5.3):
a) The zenith angle (defined as zenith in the code) must be between 0 and 70

degrees and have the format of 1 to 3 digits before the decimal, and always 3
digits after the decimal.

b) The azimuth must be between 0 and 360 degrees and have the format of 1 to 3
digits before the decimal, and always 3 digits after the decimal.

c) The duration (end time - start time) times 2 must be equal to the number of
photos. This is because 1 photo takes 0.5 seconds to be captured.

d) Number of photos must be a whole number.

5. Specific checks for scan events (see Section 5.3):
a) The duration (end time - start time) must equal 123 seconds, which is the length

of time a scan needs to work.

2 HTTP Return Code Explanation
This section describes the possible HTTP return codes for all OOD endpoints. Descriptions
are similar to those in OpenAPI, which can be found on api.alpendac.eu.

Table 1: HTTP Return Code Explanation

Code Description

200 Specified action completed successfully.
400 POST: Validation failed from user input.
404 URL could not be found.
409 Event has not been added to the schedule. (POST only)
504 GET: Gateway timeout, when internal endpoints do not respond. POST:

There was an error with the communication to kafka.
1which is a ‘profile of the ISO 8601 standard’ [KN02], meaning most of the standard overlaps.
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3 Example JSON Output

{
"data": [

{
"type": "static",
"id": "022539c2-4717-49b7-834e-91b5cae9653c",
"attributes": {

"start_time": "2022-02-16T18:42:24.913Z",
"end_time": "2022-02-16T18:42:25.913Z",
"zenith": "60.300",
"azimuth": "284.000",
"number_of_photos": 2

}
},
{

"type": "scan",
"id": "022539c2-4717-49b7-834e-91b5cae9653c",
"attributes": {

"start_time": "2022-02-16T18:42:24.913Z",
"end_time": "2022-02-16T18:44:27.913Z"

}
}

],
"links": {

"self": "https://api.alpendac.eu/v1/instrument/022539c2-4717-49b7-834e-91
↪→ b5cae9653c/schedule"

}
}

This JSON document is output which could be returned from the /event endpoint. The
only difference to this document, if it were returned from /schedule, is that there would be
filler scan events that fill all possible gaps in the schedule.
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Glossary
ACID Short for “atomicity, consistency, isolation and durability”, which can make a database

much more reliable [HR83]. p. 36

AlpEnDAC Alpine Environmental Data Analysis Center. pp. 1, 3, 11–13, 15, 20, 21, 27, 28,
36, 37, 39, 47

API Application Programming Interface. pp. 3, 7, 13, 14, 30

Astral Python library for calculating “[t]imes for various positions of the sun: dawn, […],
dusk, […]” [Ken]. p. 31

azimuth Also known as the horizontal angle, it describes the angle between 2 objects that
are on the same “horizontal plane” [Mah]. For FAIM, it describes how much the camera
can turn left or right. pp. 9, 41, 47

CAIP Constraint-based Attribute and Interval Planning [FJ03]. p. 5

constraint optimization problem As defined in [Apt03]. pp. 5, 6, 21

constraint satisfaction problem As defined in [Apt03]. pp. 5, 6

dawn Uses the civil twilight definition of when the sun goes up [Ast]. “[T]he time of morning
[…] when the sun is 6° below the horizon” [Glo]. pp. 8, 12, 23, 31, 33, 34

DLR German Aerospace Center. pp. 1, 3, 8, 11, 22, 34, 36

Docker Software for running code in virtualized “containers”, which isolates the code and
resources from the rest of the system [Docb]. pp. 15, 16, 27, 29, 31, 32, 35, 36, 43

docker compose “Compose is a tool for defining and running multi-container Docker appli-
cations.” [Doca] It uses a YAML file that includes all the configuration for the Docker
containers. p. 36

DST Daylight Savings Time. pp. 8, 12

dusk Uses the civil twilight definition of when the sun goes down [Ast]. “[T]he time of …[the]
evening when the sun is 6° below the horizon” [Glo]. pp. 7, 8, 12, 23, 31, 33, 34

EUROPA Short for “Extensible Universal Remote Operations Planning Architecture”, it is
a planning and scheduling “library and tool set” developed by NASA [BBD+12]. pp.
6, 19–21

FAIM Acronym for “Fast Airglow Imager”, an infrared camera [DLR]. pp. 1–3, 5, 8–12, 14,
15, 17, 20, 22, 30–32, 35, 39, 43, 46, 47
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flake8 “flake8 is a python tool […to] check the style and quality of […] python code” [Pytb].
pp. 14, 15

Flask “Flask is a […] web application framework” [Pal]. p. 39

Functional requirements Requirements that describe how a system should work internally,
e.g., given an input, what should the output of the system be. It includes items such
as “[…] calculations, technical details, data manipulation and processing, and other
specific functionality” [SG05, p. 110]. p. 11

Gitlab A platform for hosting and managing git [Gita] code repositories. pp. 14, 15, 22, 35,
36

Gitlab CI “GitLab CI/CD is a tool for software development using […] Continuous Integra-
tion (CI)” [Gitc], integrated with the GitLab platform. CI systems can run tests and
linters, build code etc. automatically, for example after each commit, which enforces
that all the relevant steps are always run [Gitc]. pp. 14, 15, 35, 36

HTTP Short for Hypertext Transfer Protocol, it “is an […] protocol designed to transfer in-
formation between networked devices” [Clo]. In this work, it is used synonymously with
HTTPS, which is the encrypted version of HTTP, but is otherwise identical [MDN].
pp. 7, 31, 36, 41

JSON “JSON is a lightweight, text-based, language-independent syntax for defining data
interchange formats” [Ecm15]. pp. 7, 8, 13, 17, 23, 29, 31–35, 39, 42

JSON Schema JSON Schema is used to give a specific structure and types to JSON doc-
uments. It is similar to types in static programming languages, and allows JSON
documents to be well-formed and their validity checked. It also serves as documenta-
tion, which makes working with JSON files from other sources easier and less error-
prone [WAHD20]. pp. 8, 10, 13, 15

JSON:API JSON:API is a specified format for JSON documents, and also a specification
for how JSON documents are sent between the server and the client [JSO]. pp. 7, 8,
30, 31

Kafka “[…] Kafka is an open-source distributed event streaming platform […]” [Kafa]. Event
streaming describes a system where messages are sent, received and processed in “real-
time” from different sources, and then stored, in this case by Kafka [Kafb]. pp. 27,
31, 33, 39

Kong Kong Ingress Controller (enables security and access controls to the Kubernetes clus-
ter) [Kon]. pp. 13, 27, 29, 34

Kubernetes “[… A]n open-source system for automating deployment, scaling, and manage-
ment of containerized applications.” [Thea]. pp. 15, 16, 21, 27, 29, 36, 39

LRZ Leibniz Supercomputing Centre. pp. 1, 14, 15, 27, 36, 37
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NDDL Language used for planning created at NASA, it is an extension to a widely used
planning language known as “PDDL” [GHK+98], although there are multiple differ-
ences [BBD+12, Section 2.1]. pp. 19, 20

Non-functional requirements Requirements which do not define how a system should work
in detail or how an implementation should be coded, but which rather “[…] include[s]
how easy the software is to use, how quickly it executes, how reliable it is, and how
well it behaves when unexpected conditions arise” [SG05, p. 113]. This includes re-
quirements such as “[t]he maximum number of seconds it must take to perform a
task” [SG05, p. 113], which does not describe how this requirement should be achieved,
but rather how to measure if the requirement was achieved. p. 11

OOD Operating-on-Demand. pp. 1, 3, 5, 7, 8, 11, 27, 30, 32, 39, 41

OpenAPI “[A] standard, language-agnostic interface to RESTful APIs”, which makes work-
ing with APIs simpler to use and to implement in multiple programming languages [Ope].
pp. 3, 13, 30, 34, 39, 41

OR-Tools “OR-Tools is an open source software suite for […] constraint programming” [PF],
and can be used for scheduling [OR-a]. pp. 3, 6, 7, 19–23, 29, 31, 33, 35, 39

pep8 “Style Guide for Python Code” [VRCW]. p. 14

PHP A programming language [PHP]. p. 3

PostgreSQL “PostgreSQL is a powerful, open source object-relational database” [Theb].
pp. 27, 31, 32, 36, 39

pydocstyle “[…A] static analysis tool for checking compliance with Python docstring con-
ventions” [Pyd]. pp. 14, 35

pytest A Python testing framework [Pyta]. pp. 14, 15

Python The Python programming language [VRD09]. pp. 12, 15, 19, 20, 33, 43

REST-API A REST-API is an API, which follows the REST (Representational state trans-
fer) principles as outlined in [Fie00], which describes how to structure an API archi-
tecturally. pp. 3, 7, 11, 27, 30, 32, 39

UTC Coordinated Universal Time [KN02]. pp. 7, 8, 12, 31–33, 41

UUID4 Short for “Universally Unique Identifier” version 4 [ITU]. It is an 128 bit number
that should uniquely identify an object. A version 4 UUID is defined in the standard
as one which is “random-number-based”, i.e., the numbers used to generate the UUID
“shall be a randomly or pseudo-randomly generated 60-bit value” [ITU]. This is in
comparison to other UUID versions, which uses names or times as input to generate
the UUID value [ITU]. pp. 7, 24, 30, 31

VAO Virtual Alpine Observatory [Bav]. p. 1
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zenith angle Describes the angle between an object in the sky (known as the zenith) and
a vertical line, as seen from the observer [Hon]. For FAIM, it is used as one of the
coordinates along which the camera can turn. pp. 9, 41, 47
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