Self-Training with AutoML: Empirical Exploration and

Data-Driven Design Improvements

Martin Schumann

September 12, 202/

Version: Final

LUDWIG- -
MAXIMILIANS-

I_IVIU UNIVERSITAT
MUNCHEN

Department of Mathematics, Artificial Intelligence and
Informatics and Statistics Machine Learning
Institute of Informatics

Master’s Thesis

Self-Training with AutoML: Empirical Exploration and

Data-Driven Design Improvements

Martin Schumann

Reviewer — Eyke Hiillermeier

Institute of Informatics
LMU Munich

Supervisors Marcel Wever and Valentin Margraf

September 12, 2024

Martin Schumann

Self-Training with AutoML: Empirical Exploration and Data-Driven Design Improvements
Master’s Thesis, September 12, 2024

Reviewer: Eyke Hiillermeier

Supervisors: Marcel Wever and Valentin Margraf

LMU Munich

Department of Mathematics, Informatics and Statistics
Institute of Informatics

Artificial Intelligence and Machine Learning (AIML)
Akademiestrafle 7

80799 Munich

Abstract

With the global amount of data being estimated to be 175 zettabytes by 2025 [@SI20],
the problem of labeling data is becoming more and more of a challenge. Many ap-
proaches have been suggested to allow for machine learning algorithms to utilize
unlabeled data without the need for expensive and time-consuming human label-
ing. One of these approaches is semi-supervised learning, where a dataset contains a
small amount of labeled data and pseudo-labels the rest of the dataset by predicting
what labels for the unlabeled data will be. We achieve this using training two pre-
dictors, the first trained on only the labeled dataset, and the second trained on the
labeled and pseudo-labeled dataset. This approach is different to co-ensembling and
AutoSSL, which utilize the pseudo-labeled dataset to continue to train the original
predictor. We also introduce a “safeguard system”, which, with the help of meta-
features, predicts whether or not a given dataset will benefit from pseudo-labeling.
This allows for compute and time savings by not even having to train the second
predictor. We investigate which meta-features make good candidates for this safe-
guard system and train an ML model which can be utilized to give insights into
what makes a dataset a good candidate for semi-supervised learning. In this work,
we evaluate the performance on well-known benchmark data sets using customized
metrics. Furthermore, we explore which aspects of datasets lead to better or worse
performance under which metrics and evaluate how this can lead to improvements

in our safeguard system’s design.

Acknowledgement

vii

Contents

1. Introduction 1
1.1. Motivation and Problem Statement 2
1.2. Thesis Structure L 3

2. Foundations 5
2.1, AutoML 5
2.2. AutoGluon 5
2.3. Auto-Sklearn and Scikit-Learn 6
2.4. Semi-Supervised Learning oL 6
2.5. Meta-Features. 6

3. Related Work 9
3.1. AutoML and semi-supervised learning combined 9
3.2. Autogluon’s current semi-supervised support 10
3.3, SUMMATY . . . oL e e e e 10

4. Semi-Supervised AutoML Pipeline 13
4.1. AutoML Pipeline 13
4.2. Safeguard Systemo 15

5. Experiments 17
5.1. Experimental Setup 17
5.2, Datasets L L 18
5.3. Performance Metrics oL 19
5.4. Evaluation Metrics 20

54.1. SHAP 23

6. Results 25
6.1. Settings Affecting Performance (RQ1) 25
6.2. Linear-Ensembling versus Autogluon’s Built In Semi-Supervised Learn-

ing Support (RQ2) 32
6.3. Meta-Features (RQ3 and 4) 34
6.4. Safeguard System (RQ5) 40
6.4.1. AutoGluon 43

ix

6.4.2. RandomForestClassifier

6.4.3. Conclusion

7. Conclusion

7.1. Future Work

A. Appendix

A.1. Custom Datasets

A.2. Safeguard System Training Procedure
Bibliography
List of Figures
List of Tables

Glossary

63
63

65
65
67

69

75

79

81

Introduction

One of the biggest problems in machine learning (ML) and artificial intelligence
(AI) research is the availability of labeled data. What does this mean? Most
data that exists and would be useful for training machine learning models do not
have labels describing what the data represents, e.g., for images what objects they
contain. These labels, however, are required to train many models, making labeled
data one of the most important and costliest things in machine learning [Murl2;
HNPO09]. This is because labeling the data is most often still done by humans who
add the labels, which is expensive, time-consuming, labor-intensive, and not easily
scalable [Yao+18; Zho+17; Murl2]. It can also be error-prone.

For ML, a larger amount of correct data almost always leads to higher accuracy
results of the model [HNP09]. This is not a problem when ML is done with un-
supervised learning, (e.g., for clustering data) because it does not require labeled
data, as the model categorizes and extracts certain inherent patterns or features of
the data [Bar89; Murl2]|. There are limitations to this approach however, including;:
the lack of “ground truth”, i.e., assessing how well a model performs by comparing
to correctly labeled answers and no easy way to provide feedback to influence the
model. Furthermore, the unsupervised learning approach is sensitive to how the
data is input and used (e.g., introducing biases) [Sch+22; CR18; SLH22; TE11].

Supervised learning, which relies on labeled data, and is used e.g., for prediction,
does not have some of the limitations that unsupervised learning has. However,
because of the smaller amount of labeled data, it has other limitations, including

the aforementioned sensitivity to the quality of labels.

Because many ML algorithms rely on supervised learning, there is a tendency in
machine learning research for training being executed on the same, much smaller
subset of existing data sources, e.g., the IMDB dataset [Maa+11] or MNIST [LeC98;
Pla98]|, as they are already labeled.

To deal with the problems arising from this lack of labeled training data, the con-

cept of self-training was introduced [He+19; Scu65]. One common approach for

1.1

this is having an ML model which uses its learned “knowledge” to label unlabeled
datapoints, and then utilizing these datapoints to train further, with the goal of
improving the performance of the model [EH21]. A different approach works by
having one ML model create labels for use in a second ML model. The first model,
through supervised learning, is able to “self-label” unlabeled datasets, using the
same “human” labels as the dataset it was trained on. These labels, known as
“pseudo-labels” are then applied to an unlabeled data set, combined with existing
“human” labels and fed into a separate supervised learning model. This (hopefully)
eliminates the need for massive amounts of labeled data by generating some la-
bels with the first model. To simplify selecting and tuning these models for each
dataset, we utilize AutoML (Automated Machine Learning)-based libraries, which
are able to automate many parts of an ML workflow [Feu+15]. This enables us
to focus on higher-level tasks, rather than spending time, e.g., manually tuning

hyperparameters or selecting which models to use.

Of course, the question is, if and under which circumstances adding more data
in the form of automatically labeled data can lead to better performance in the
second model compared to just using a smaller set of human labeled data. As there
is no guarantee that “pseudo-labels” from the first model are accurate, adding more
datapoints might lead to a worse performance for the second model. We therefore
ask our main research question: can better performance of an AutoML trained
ML model be achieved by utilizing previously unlabeled data, which a separately
(AutoML) trained model has labeled?

Motivation and Problem Statement

For supervised learning, new data cannot be used until it is labeled. This means
that canned benchmark datasets are used, which can contain incorrect [VEJ21;
Ast+15], biased [Carl19], or incomplete information [VEJ21; Ast+15]. Furthermore,
older data might not correspond to changes in the real world [Din+21]. Two exam-
ple datasets that fit these criteria and are widely used are the “Boston Housing”
dataset [HR78; Del96; Carl9] and the “Census Income” dataset [Din+21; BK96].

The goal of this work is to investigate if less reliance on canned benchmarks is pos-
sible with the help of semi-supervised learning. Although, as with most machine
learning models, 100% accuracy can’t be guaranteed while being sufficiently gen-

eral [WM97; Murl2; Wol96], an improvement to the status quo is welcome. We

Chapter 1

1.2

investigate whether it is possible to make sure that inaccuracies in the “pseudo-
labeled” dataset do not lead to errors or performance loss, which can often oc-
cur [He+19; ZG09].

We investigate this accuracy problem and which factors could lead to worse perfor-
mance, and try to eliminate these factors in order to achieve better performance at
the end of the learning process. We also automate this process to eliminate a lot of

expensive and time-consuming human labor [Zho+17; Yao+18|.

Our results could also mean less costly and faster iteration of models with new
unlabeled data, because newer data sources can be labeled and used to train an
existing model. This is an ongoing and very important area of research, as many

ML systems try to improve by having more up-to-date data [Dat].

Less reliance on a handful of datasets could lead to an improvement in performance
and usefulness for ML models. This is particularly relevant in application areas
where the amount of varied labeled datasets is slim [ZL18; And10; Lat+17].

Therefore, if being able to use semi-supervised models with similar or better perfor-
mance compared to regular supervised learning models is possible, it would provide
many benefits, such as reducing the reliance on canned labeled datasets, decreas-
ing the cost of human labeling and increasing the speed of innovation in various

domains.

Thesis Structure

Chapter 2
In this chapter, we introduce the state of the art in AutoML and Self-Supervised

Learning research, and explore the foundational elements of meta-features.

Chapter 3

In this chapter, we describe the research that has been done to combine AutoML

and Self-Supervised Learning.

Chapter 4
In this chapter, we describe the theory behind our approach, including the safeguard

1.2 Thesis Structure

system. This system can predict whether it is likely for the second classifier to
perform better or worse. This makes it possible that the second classifier does not

even need to be trained, which may be an expensive task.

Chapter 5

In this chapter, we present the experimental setup, including which datasets and

performance metrics are used.

Chapter 6

In this chapter, we present the results of our experiments, including which meta-
features can predict the performance impact of the classifiers, and how this infor-

mation is used in the safeguard system.

Chapter 7

In this chapter, we discuss future work and our conclusions.

Chapter 1

2.1

2.2

Foundations

In this chapter, we introduce foundational concepts related to our approach, includ-

ing AutoML, semi-supervised learning and meta-features.

AutoML

AutoML (Automated Machine Learning) as a concept describes the process of au-
tomating ML tasks and workflows. There are many libraries which utilize AutoML
algorithms to provide the ability to simplify a lot of work required for building ML
systems [Feu+15]. This wide field of libraries includes ML-Plan [MWH18], Auto-
WEKA [Tho+13], which is an extension to “WEKA”, auto-sklearn [Feu+15], which
is an extension to the popular scikit-learn [Ped+11] library, and AutoGluon [Eri+20],
which is a newer AutoML framework. They accomplish simplification by automat-
ing a lot of the time and tedious process of setting up an ML pipeline. Among
other things, they automate the data preprocessing and feature engineering steps,
the model selection steps and the hyperparameter optimization [Feu+15; Tho+13;
MWH18]. With the help of feature extraction and feature selection, the data is
preprocessed and the relevant features are selected. For model selection, AutoML
libraries try out different models to find the best one for a given dataset. Hyper-
parameter optimization ia another important task, which involves using different
algorithms to select the optimal hyperparameters for a given model. Although most
AutoML libraries support these features, they are not created equal, as we will see

in the next section.

AutoGluon

AutoGluon is an AutoML library which promises to be very easy to use while having

competitive performance. It can achieve this by “ensembling multiple models and

2.4

stacking them in multiple layers” [Eri+20], e.g., combining the output of multiple

models for one prediction.

This framework was chosen for the quality of its models, its easy of use and its
speed, especially compared to auto-sklearn. It is also one of the best performing
AutoML libraries on current benchmarks [Gij+23].

Auto-Sklearn and Scikit-Learn

Another popular library, which has been used in a lot of AutoML research is
auto-sklearn. By eliminating algorithm selection and hyperparameter tuning, it
is able to make training ML models very easy. It is based on the widely used
scikit-learn [Ped+11] library. Although we do not utilize auto-sklearn, we utilize
scikit-learn [Ped+11]’s RandomForestClassifier. It is a classifier which combines
multiple decision trees in order to improve performance [@Sha]. We use it for our
safeguard system because of its ease of use, performance and being simple to tune

and debug.

Semi-Supervised Learning

Semi-supervised learning is one way to deal with the problem of large amounts of
unlabeled data existing. The basic concept is having a subset of the data being
labeled and then use certain strategies to utilize on the rest of the unlabeled data.
One of these strategies is known as “pseudo-labeling”, which involves an algorithm
labeling some or all of the unlabeled data. These “pseudo-labeled” data points are
then used like normal data points. The combination of labeled and pseudo-labeled

data can then be used to train with supervised learning algorithms [Lee+13].

Meta-Features

Meta-features are calculated measures of a dataset that describe aspects of the
dataset [Alc+20]. These features can be used to predict the performance of ML

Chapter 2

algorithms and can also be, e.g., utilized in AutoML for model selection and opti-
mization [Kot+21].

Alcobaga et al., the authors of an implementation of meta features for python
(pymfe [Alc+20]), provide a lot of different meta features to choose from. These
meta-features can be split into multiple groups, including, but not limited to: model
based, landmarking, and clustering [Alc+20; Riv+18]. Model-based meta features
are “measures extracted from a model” [Riv+18], meaning that a simple model,
most often a decision tree is trained and the characteristics of this model are the
meta features. Examples include the number of leaves or the tree imbalance [QEde].
Another meta-feature group is landmarking, which are “measures that use the per-
formance of simple and fast learning algorithms to characterize datasets” [Riv+18],
e.g., training simple classifiers and the extracting the characteristics of these classi-
fiers. Examples include the nearest neighbor or naive Bayes classifiers [@Ede]. A
third meta-feature group is clustering, which as the name implies, deals with the
characteristics the clusters in a dataset have [Alc+20; PD19]. Examples include

the Pearson correlation or the Dunn index [Q@Ede].

In this work we utilize meta-features for our safeguard system, to be able to predict if

training with “pseudo-labeled” data will lead to an improvement of performance.

2.5 Meta-

Features

3.1

Related Work

AutoML and semi-supervised learning combined

There are two main papers that focus on unifying AutoML and semi-supervised
learning. The first, by Engelen and Hoos introduces the term co-ensembling [EH21].
The paper introduces an approach for generating pseudo-labels: letting a group of
K classifiers learn on a labeled dataset, and then having a subset of K —1 classifiers
add artificial labels to an unlabeled portion of the dataset. This combined data is
then used to train the K-th original classifier further. This classifier is then the
final model. These classifiers are all trained with the help of auto-sklearn [Feu+15].
Selecting which data to label is done by having a certain threshold of minimum
probability, and only selecting a set number of unlabeled data instances to label.
Although the authors introduce this approach as being able to be repeated in a
multistep process, their findings conclude that single-step is better, as multiple
steps can lead to errors at the beginning being multiplied, leading to a much worse
performance as the iteration continues. They therefore focus on single-step co-

ensembling.

While this paper contains both binary and multi-class datasets, and utilizes the
OpenML100 collection of datasets, its performance in binary datasets is still lacking,

according to the authors.

The second paper, by Li et al., introduces the term AutoSSL (for auto semi-
supervised learning) to describe unifying the two approaches (AutoML and SSL)
from the view of semi-supervised learning (SSL). The authors use a clustering ap-
proach to characterize the data, and use meta-features of the data to inform the
“automated learning” [Li+19] process. This “automated learning” [Li+19] process
utilizes well-known SSL algorithms and combines it with AutoML techniques to

tune the hyperparameters of these algorithms.

3.2

10

This approach is then compared to a normal auto-sklearn approach, which the
authors claim has “highly competitive” [Li+19] performance compared to classic
SSL techniques.

This paper [Li+19] focuses on small binary datasets, and the approach has not been
extended to “multi-class problems or very large scale datasets” [Li+19], which are

described as future work.

Li et al’s paper is also referenced by [EH21] as having a different approach, although
both papers focus on how to combine AutoML and semi-supervised learning. The
differences lie in the angle from which the authors tackle the problem. Li et al.
use semi-supervised learning algorithms and tune them using AutoML techniques,
whereas Engelen and Hoos use AutoML tuned classifiers to try and improve classifier

performance.

Autogluon’s current semi-supervised support

Autogluon has experimental support for “unlabeled data”. However, it requires
the experimental “FT TRANSFORMER (Tabular Transformer, GPU is recom-

mended.[..])” [@Aut, #L504] model, which “does not scale well to >100 features.” [@Aut,

#L504]. This translates to quite a few shortcomings: requiring a GPU and less than
100 features for good performance and only being able to be used with the Tabular
Transformer model [@Aut, #L900-L911]. These shortcomings limit the usability

compared to our approach.
There is also some support for “pseudo-labeling” [@Aut, #1.1904], which labels data

above a certain probability threshold and uses it as extra training data to refit the

original model.

Summary

There is a real need for more research in the area of learning with large amounts of
unlabeled data, as more and more the limits of labeled datasets are revealed [VEJ21;

Sch+22]. The need to decrease the immense cost and effort required to label data

Chapter 3

is also becoming more and more important. Our approach, which will be discussed
in more detail in the next section, differs to current approaches in two important
ways. First, they retrain a model instead of training another completely separate

model from scratch, and they also lack our safeguard system.

3.3 Summary

11

4.1

Semi-Supervised AutoML
Pipeline

As described in the previous chapters, there are multiple ways to combine semi-
supervised learning with AutoML. These approaches use an existing model that
was originally trained on labeled data. This model is then retrained on an updated
dataset with new “pseudo-labeled” data (e.g., [EH21]).

This is different from our approach, where we train two independent models. The
first model has been trained with the originally labeled data. The second model
is then trained from scratch with a combination of data that has been “pseudo-
labeled” by the first model, and originally labeled data. We call this method linear-
ensembling, as the models are trained sequentially in a linear fashion. This is

contrast to co-ensembling, where a single model is retrained, as defined in [EH21].

In the following sections, we describe our main pipeline (Section 4.1), which illus-
trates the concept behind our linear-ensembling approach. This pipeline produces
the second trained model. However, sometimes the second model performs worse
than the first model. We therefore introduce a safeguard system (Section 4.2),

which decides which model should be returned.

AutoML Pipeline

In this section, we introduce our linear-ensembling pipeline (Figure 4.1), consisting
of the two models M1 and M2 to be trained. Each model is a classifier trained using
AutoGluon (“AutoML” in Figure 4.1). The models are trained one after the other
and the pipeline returns M2 as the final model.

The pipeline utilizes three subsets of one dataset: the labeled data (d;), the unla-
beled data (d,) and the test data (d;, also labeled).

13

14

M1 is trained solely on labeled data. Once trained, it pseudo-labels all the unlabeled
data. It only keeps those data points above a certain confidence threshold, which
is a constant value (see Section 6.1). Pseudo-labeling involves a classifier (here:
M1) predicting the label for a certain data point in d,. In our case, the classifier
predicts a probability distribution for the possible labels for each data point. Then,
only if one label has a higher probability than the confidence threshold, the data
point is used for further training. If no label has a high enough probability, the
data point is not used for further training. This pseudo-labeling step is the “Adds
labels” process in Figure 4.1 and is shown in more detail in Figure 4.2. All the
newly pseudo-labeled data and labeled data are combined into a new dataset used
to train the model M2.

To test our approach, the performance of M1 and M2 are tested on the test data
and the performance is compared, according to the “accuracy” measurement (see
Section 5.3).

Test
- Performance
Data e
Test
\(Labeled}
Test | v
P Performance |
N] i
Data : » AutoML —
Unlabeled i Adds Labels
| 'y
— i M2
] e
Data > AutoML ———> M1
Labeled

Fig. 4.1.: Graphical representation of the pipeline. M1 is the first model (labeler), M2 is
the second model.

Chapter 4

4.2

Pseudolabeling

Threshalding

h 4
L

Data
Unlabeled

Y Y

M1

Fig. 4.2.: Graphical representation of the “Adds labels” process from Figure 4.1. Data with
pseudo-labels that do not meet a certain threshold get “thrown away” (trashcan).

It is possible that M2 sometimes performs worse than M1. To overcome this prob-

lem, we introduce a safeguard system, described in Section 4.2.

Safeguard System

Sometimes, introducing more training data in the form of “pseudo-labeled” data
can actually hurt the performance of a model. This effect, known as confirmation
bias [Ara+20], means that, for our approach, M2 might perform worse than MI.
This is because if the “pseudo-labels” of M1 are incorrect or the model is overly
confident in its predictions, a lot of bad predictions are used to train M2. This
means that M2 will learn from these bad predictions and labels, which might lead
to it performing worse than M1, which was trained only on correctly labeled data.
We therefore need to make a decision of whether to select M1 or M2 as our final
model. Furthermore, if training M2 results in decreased performance, we would
waste a lot of costly training time. We have decided to alleviate the problem of
deteriorated performance and the high cost of training by introducing a safeguard

system.

This system predicts whether a given M2 model will perform better or worse than
the M1 model. Then, depending on settings, pseudo-labeling of data and the train-
ing of M2 will not occur. As can be seen in Figure 4.3, prediction is done by extract-
ing meta-features from the initially labeled dataset, and then returning whether M2
would perform better. If M2 is predicted to perform better, the safeguard system

returns “plus”, otherwise it returns “minus”.

4.2 Safeguard System

15

16

v

-~

Adds Labels M2

Data AutaML e < N
Unlabeled LN

plus (Train M2)
Meta Feature

Extraction

v

Test '
Performance |

Safeguard
System

M1 —
o rTest Data
D AutoML erformance Test
o B {Labeled)
Labeled

Fig. 4.3.: Pipeline with Safeguard System included. Pseudo-labeling and training of M2
only occurs if the safeguard system allows it. Otherwise M1 is kept as the main
model.

This system provides two major benefits. First, it is able to give insight into when
and how an ML model performs better or worse after being trained with pseudo-
labeled data, and for which datasets this occurs. Second, it saves time and compute
resources as it can be used to provide a quicker and more efficient insight into
whether a dataset will perform worse with M2, and so M2 does not even need to

be trained.

The safeguard system is implemented both using scikit-learn’s
RandomForestClassifier and AutoGluon. This is to make evaluating various
performance differences easier, as is described in Section 6.4. Both systems are

trained using the same procedure (see Section A.2).

Chapter 4

Experiments

In this chapter, we explore how the experiments were run and what the criteria
for performance and success are. We aim to answer our main research question:
can better performance of an AutoML trained ML model be achieved by utilizing
previously unlabeled data, which a separately (AutoML) trained model has labeled?

To accomplish this, we split up our research into answering 5 research questions:

1. Which settings affect the performance of the model M2?

2. Does our approach perform favorably to AutoGluon’s built in support for

semi-supervised learning?

3. Is there a way to predict the performance of a certain dataset? Here we

investigate the usage of meta-features.
4. Which meta-features perform the best for the safeguard system?

5. Which models and settings influence the performance of the safeguard system?

5.1 Experimental Setup

As described in Chapter 4, we run tests to compare whether utilizing pseudo-labeled
data can improve the performance of a classifier. We also need to train and bench-

mark our safeguard system as described in Section 4.2.

We run both of these tasks on the LRZ’s interactive and serial linux clusters [@Rec]
(using slurm), which at the time of writing are running “Intel(R) Xeon(R) CPU
E5-2697 v3 @ 2.60GHz” CPUs. We do not utilize GPUs for our work, as they bring

no huge performance benefit for our datasets (tabular data).

17

.Cﬂ

18

We utilize python 3.10 and anaconda version anaconda3/2022.10 to run our ex-
periments, as this is the latest version as part of spack/23.1.0, which is the most
up-to-date software packaged for the linux clusters. The package versions utilized

are also pinned in the requirements.txt files.

For AutoGluon’s fit method (which trains a model), we keep the most of the
default settings as described in [@Eri424], except for increasing the time limit
to 600 seconds and changing the quality parameter. As described in [QEri+24],
there are different qualities to choose from that define how fast the training and
inference speed is and the quality and size of the models. We utilize two different
quality settings in our testing: medium quality (the default) and high quality.
For most of our tests, we use medium quality as it provides fast training and
inference speeds, without a lot of overhead. We use the results obtained from
the high quality setting to verify our insights gained from the medium quality
results. We decided not to utilize best quality as it consumes a lot of resources.
The results of datasets trained using the medium quality setting are used when

training the safeguard system.

For pymfe, we also add a time limit of 600 seconds, as sometimes calculating the
meta-features can take a long time. If the time limit is reached, our safeguard

system method errors out and linear-ensembling continues with training M2.

Datasets

For the datasets, we utilize the OpenML100 [Bis+21] datasets and its successors, the
OpenML-CC18 [Bis+21] datasets as a baseline for performance comparison. These
datasets are widely used [Bis+21], and are suitable as a basis for benchmarking the
performance of our approach and the safeguard system. For more variety and to see
how the implementation functions on larger and more diverse datasets, we utilize

some datasets which were compiled by Fusi et al. We put them in 3 dataset groups
and named them CD1 [FSE18], CD2 [FSE18], and CD3 [FSE18] (see Section A.1).

For each individual dataset, we do no preprocessing or normalization, as AutoGluon
takes care of these tasks. We split the dataset as follows: 80% is used for train-
ing, with 10% of that data being labeled, i.e., 8% of the total. The other 20% is
used as test data to test the performance of our models. We utilize scikit-learn’s

train_test_split method with random_state=42 to split our dataset.

Chapter 5

5.3 Performance Metrics

There are a lot of different performance metrics which describe how well a classi-
fier can classify. For binary classifiers, they include: accuracy, Fy, Fj, recall and
precision [@Resa; @Qdevb; @Qdeva; @Qdeve; @Resb]. All of these metrics rely on 4
values: TP (True Positives) and TN (True Negatives), which describe the number
of classifications a binary classifier gets correct, and FP (False Positives) and FN
(False Negatives), which are the number of classifications that are incorrect [@Resa].
The reason for splitting classifications into 4 categories is to distinguish between
different types of misclassifications, e.g., for an MRI incorrectly not identifying
cancer versus incorrectly identifying cancer. In binary classification, the positives
correspond to one label, and negatives correspond to the other label. These metrics
can also be used in multi-class, by having positives correspond to the correct label,
and negatives correspond to all other incorrect labels. They are then also typically

weighted by according to their class size.

Accuracy describes the ratio of correct predictions to the total number of predictions
a classifier makes [@Resa]. It is the measurement we use to measure the performance
of the classifiers on the datasets described in Section 5.2. The formula for binary

classifiers is as follows:

TP +TN
TP+TN+ FP+FN

accuracy =

Recall describes what percentage of positive classifications are actually correct [@deve].

TP

ll=———
reca TP+ FP

[@Resb]

Precision is similar to recall, but it describes how well a classifier is able not to

“label as positive a sample that is negative” [@Qdevc].

TP

precision = TPLFN

[@Resb]

5.3 Performance Metrics

-Cﬂ

20

Fp describes the “weighted harmonic mean of precision and recall” [@devb], i.e.,

the ratio of the two including a [parameter to control the ratio.

(142« TP
(1+p52)«TP+FP+ (2« FN

Fg =
[@devb]

Fy is the same formula as Fz with § = 1, i.e., an unweighted “harmonic mean” [@Qdeval.

_ 2xTP
- 2xTP+FP+1xFN

Fy

[@Qdeva]

We also implement a custom scorer, which weighs false negatives or false positives

heavily. The general formula for it is:
weighted)oss = (weight prx F N)+(weight ppx F P)+(weighty, TN)+ (weightpxT P)

(based on [TGS10])
The weights for TN and TP are equal to 0.

This allows us to weight only false positives and/or false negatives heavily and so

be able to influence the performance of the classifiers much more.

In our experiments, we use accuracy for the performance of the models M1 and M2,
and we have utilized accuracy, F1, Fjg and recall to train the safeguard system’s

classifier.

Evaluation Metrics

In this section, we describe how we measure the performance of our approach, and
how we quantify different subsets of our results to paint an overarching picture.
To calculate the performance metrics, we utilize three python scripts. The first
calculates the mean and graphs the safeguard performance: safeguard_perf.py.
It ignores datasets where the safeguard system, i.e., pymfe errors out. The pymfe

errors can occur for multiple reasons: a calculation time limit, a memory limit, or

Chapter 5

0o N o o B~ W N =

another error. The second script (graph_slurm_output.py) graphs the before and
after performance. The third script (read_out_compare.py) counts which linear-
ensembling run performed better given 2 runs by counting which run won for each

dataset. Its results are very close to the results for the mean in terms of efficacy.

Overall performance is evaluated using the “accuracy” measurement. We utilize the
change in “accuracy” between M1 and M2 (accuracy = accuracyyra — accuracypr)
as the “general” performance metric. If accuracy > 0, then M2 has performed
better, if accuracy < 0, then M1 has performed better. The “accuracy” measure-
ment allows for an individual view of each dataset and also how much the safeguard
system affects one dataset. The mathematical definition of “accuracy” is found in

Section 5.3.

Another metric to evaluate the performance of our approach is the percentage of
data ignored (pdignored7). It describes, at a given threshold (see Section 6.1), what
percentage of data is not used for training M2, and is useful for measuring the

impact of thresholds. It is defined as follows:
pdignored% = (100 * ‘dignored|)/|dpseudolabeled

with

e dignored being a set of data points that are pseudo-labeled but have low con-

fidence and are therefore not utilized.
o and dpseudolabelea being the total set of pseudo-labeled data points.
The third metric for evaluation is comparing two different runs (run_1 and run_2)

on the same dataset d and comparing which dataset “wins” in terms of “accuracy”

for each run. These are then tallied up into a count. The pseudocode is as follows:

wins_run_1

I
o

wins_run_2

for d in datasets:
if accuracy(run_1, d) > accuracy(run_2, d):
wins_run_1 = wins_run_1 + 1
else:

wins_run_2 = wins_run_2 + 1

5.4 Evaluation Metrics

21

22

To compare accuracy with and without the safeguard system, we define the follow-
ing: Without the safeguard system (acc) describes the “accuracy” of M2 when
the safeguard system is not applied (acc = accuracyyre). With the safeguard
system (accss) either the “accuracy” of M1 when the safeguard system predicts
“minus” (accss = accuracyysi) or M2 when the safeguard system predicts “plus”
(accss = accuracyprz). Only datasets which do not hava a pymfe error are looked at.
To evaluate how well the safeguard system performs, we count how often accss > acc

for a suite of datasets.

A further metric to evaluate the performance of the safeguard system is comparing
the mean accuracy with (mean((accss))) and without (mean((acc))) the safeguard
system. Let (acc) = {accy, ..., ace,} and (accss) = {accss 1, . .., accss n }t, with each

acc; and accgs; being the accuracy of one dataset i.

sl g,

meant(e) == ey (5.1)
|(acess)] ' :
mean((accss)) = 2i=1 QCCss,i
|(accss)]

Only datasets which do not have an error with the pymfe system are looked at. The
mean gives a different view on the impact of the safeguard system by not looking

at individual values but the overall performance impact on a suite of datasets.

We also utilize the MDI (mean decrease in impurity) graph, which shows the most
significant features as the mean (blue bar) and the variation (standard deviation)
around the “decrease in impurity” value (black bar) [@sci]. This graph allows us to

show the importance of each feature and how much it contributes.

Additional measures are those created by the SHAP (“SHapley Additive exPlana-
tions” [LL17]) library, which utilize the SHAP value (impact on model output) as a
way to measure the performance of features of a dataset [LL17]. We describe them

in more detail in Subsection 5.4.1.

Chapter 5

5.4.1 SHAP

In this section we describe the SHAP library [LL17] and how we utilize it to evaluate
and analyze our meta-features and safeguard system. SHAP is a python library that
utilizes a “game theoretic approach” [@Lunc] to give insights into ML models. It
does this by computing Shapley values, which, in their original form, calculate
how to “fairly” distribute the reward of a game among players, who might be in
a coalition. To calculate this, each subset of players and their contribution to the
game is looked at. This approach is applied to an ML context by having the “reward”
of the game be the prediction, and the players be the individual features [Mol20].
The “coalition” of features is then, e.g., a collection of pixels for an image based ML
task [Mol20]. This approach makes SHAP able to calculate how features interact

to influence a prediction.

We use two types of SHAP based graphs to explain our meta-feature selection
and the impact of the meta-feature items on model output. The first is the bar
plot [@Luna], which shows how much each meta-feature contributes to predic-
tions [@Coo]. This feature importance is defined as the mean of the absolute Shap-
ley values (mean(|SH APvalue|)). The more a feature contributes towards a pre-
diction, the higher the SHAP value. The second plot is the beeswarm plot [@Coo],
which is showing two things. The first represents the feature’s value ranging from
low to high (blue to red), indicating the specific value of the feature for each data
point. The second is the impact of each feature to the model output, as defined by
the SHAP value.

5.4 Evaluation Metrics

23

6.1

Results

In this section, we present the results of our experiments by answering the research

questions defined in Chapter 5.

Settings Affecting Performance (RQ1)

In this section, we answer the research question: which settings affect the perfor-

mance of the model M27 There are 2 main aspects to consider here.

The first are the thresholds for keeping pseudo-labeled data. Each prediction from
M1 comes with a probability distribution for each label which sums up to 100%, e.g.
80% for label 1 and 20% for label 2. When deciding which pseudo-labeled data to
keep, we utilize the probability distribution and only keep the labels with at least
one of the labels having a probability greater than the threshold. A high threshold
means only a few predictions are used to train M2, the downside being that not
a lot of pseudo-labeled data is used. Using very little pseudo-labeled data means
there is litte possibility of M2 increasing its performance. A low threshold has the
opposite problem, that a lot of possibly inaccurate pseudo-labels are used. The
goal is to find an appropriate threshold which finds a good middle ground between
these 2 problems.

We have found that a threshold of 0.8 achieves a balance between having too few new
labels and having a lot of incorrect labels. We have also investigated the following
thresholds: 0.5 (better than a coinflip for binary datasets), 1/|labels| (better than
a coinflip for multi-class datasets), and 0.9. As can be seen in Figure 6.1 and
Figure 6.2, a threshold of 0.9 leads to a worse performance of M2 compared to
0.8.

Both 0.5 and 1/|labels| had worse performance. 1/|labels| eliminated almost no dat-

apoints at all (Figure 6.3), which makes it useless as a threshold. 0.5 eliminated al-

25

26

120

100 ~

80

60 1

Amount

40

20

0 S
-0.15 -0.10 -0.05 0.00 0.05
Change in accuracy (after-before)

Fig. 6.1.: Histogram of a threshold of 80% and the change in performance.

120

0.10

100 A

80 4

60

Amount

40 +

20 4

0 T - T
-0.15 -0.10 —0.05 0.00 0.05
Change in accuracy (after-before)

Fig. 6.2.: Histogram of a threshold of 90% and the change in performance.

Chapter 6

0.10

most no datapoints for binary datasets, and while it worked for multi-class datasets
(Figure 6.4), it still performed worse than the other thresholds (Table 6.1).

100 +

80 4

60

40 1

Percentage of data ignored

20 1 ®

: @ W (@ &

T
-0.15 —=0.10 —0.05 0.00 0.05 0.10
Change in accuracy (after-before)

Fig. 6.3.: Percentage of data ignored vs change in accuracy for threshold of 1/|labels].

Orange represents more than 2 labels in a class, whereas blue is a binary (2
labels) dataset.

When calculating the mean accuracy (see Section 5.4) using the safeguard system
(Table 6.1), 0.8 also comes out ahead with the best value of an increase of 0.006 in

the mean.

Threshold Mean with Safeguard System Mean Is Better?

0.5 0.7924 0.7899 True
0.8 0.7967 0.7907 True
0.9 0.7812 0.7798 True
1/|labels| 0.7871 0.7882 False

Tab. 6.1.: Mean values for different thresholds, run on OpenML100. “Is Better?” being
“True” means that the mean with safeguard system is larger than the mean
without it.

The second aspect, as described in Section 5.1, is which quality settings we set for
AutoGluon’s fit method. We compare the default medium quality (MQ) with
the high quality (HQ) output using the same safeguard system. The number

of datasets compared is fewer than the total number of datasets because of time

6.1 Settings Affecting Performance (RQ1)

27

28

100 A

80 4

60

40

Percentage of data ignored

20 A ™

0 i : ._*_._-_-.'7
-0.15 -0.10 —0.05 0.00 0.05 0.10
Change in accuracy (after-before)

Fig. 6.4.: Percentage of data ignored vs change in accuracy for threshold of 0.5. Orange
represents more than 2 labels in a class, whereas blue is a binary (2 labels)
dataset.

limits and pymfe errors. We compare the performance using the “accuracy” mea-

surement.

1. Compare M1 (HQ) vs M1 (MQ) on OpenML100

2. Compare M2 (HQ) vs M2 (MQ) on OpenML100

3. Compare M1 (HQ) vs M1 (MQ) on CD3

4. Compare M2 (HQ) vs M2 (MQ) on CD3

The results can be found in the following tables. We look at the results by comparing
the count of datasets where HQ and MQ are better (Table 6.2 and Table 6.3) and

the mean accuracies (Table 6.4).

In almost all scenarios, high quality is slightly better, as a count of individual better
datasets (as opposed to the mean, described later). For our use-case, high quality is

not that worth it to test the performance of linear-ensembling. This is because the

Chapter 6

Datasets |HQ| better |MQ| better |EqualPerf| Winner

OpenML100 HQ vs MQ (M1) 40 36 7 HQ
OpenML100 HQ vs MQ (M2) 48 27 8 HQ

Tab. 6.2.: Comparing high quality vs medium quality on OpenML100.

Datasets |HQ| better |MQ)| better |EqualPerf| Winner
CD3 HQ vs MQ (M1) 43 41 11 HQ
CD3 HQ vs MQ (M2) 40 41 14 MQ

Tab. 6.3.: Comparing high quality vs medium quality on CD3.

performance difference is minimal, especially when comparing performance after

linear-ensembling.

In the following table (Table 6.4), we compare the mean accuracies for different

quality selections.

Datasets Mean with Safeguard System Mean Is Better?
CD3 HQ 0.6719 0.6733 False
CD3 MQ 0.7121 0.7019 True
OpenML100 HQ 0.7707 0.7690 True
OpenML100 MQ 0.7831 0.7764 True

Tab. 6.4.: Mean accuracies for different quality selections. HQ is high quality, MQ is
medium quality. “Is Better?” being “True” means that the mean with safeguard
system is larger than the mean without it.

Mean is somewhat better for medium quality, especially for CD3 HQ, which de-
creases its perf with the safeguard system. This shows that the linear-ensemble
system overall works better on medium quality, including because the safeguard
system is trained on medium quality datasets. This result can be seen in Fig-
ure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8. This reason for this result, as can

be seen, is that there are a lot more positive outliers for medium quality.

In the next sections, we will also look at the performance in terms of run-time and

accuracy when utilizing the safeguard system.

6.1 Settings Affecting Performance (RQ1)

29

10

e Dataset .
—— Equal Performance
IS
(U]
I
Y oe+ .
wn
T 0
(]
3
(o)) 1
o 06
[res
©
%]
-
3
E 0.4 1
=
=
>
[e]
o
5 02
O
(V]
<
0.0 T : T T
0.0 0.2 0.4 0.6 0.8 10

Accuracy with Safeguard System

Fig. 6.5.: Performance Comparison of Safeguard vs Non-Safeguard Models: CD3 high qual-

ity
10
® Dataset [
puwlinear 3
—— Equal Performance L2 ’W:}" ary
5 teachingAssistg”™ ® .)
ara o ' fricd 100 2
L%'Olﬂ- * ;] .
e} fi_c2_100_10 analcatdata_chlamydia
_ [] L]
© iris
=] —
D 56 _ b _ * —sleuth_case2002
,E) ¥es 1000 ©
©
wn
-
S .
o
C 04
=
= tae
> L]
[®]
s
0.2
3
(V]
(@]
<
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10

Accuracy with Safeguard System

Fig. 6.6.: Performance Comparison of Safeguard vs Non-Safeguard Models: CD3 medium
quality

Chapter 6

e Dataset
—— Equal Performance

14 =4 o
S o o
[

Accuracy without Safeguard System

0.0

0.0 O.‘Z 0:4 0:6 0.‘8 1.0
Accuracy with Safeguard System

Fig. 6.7.: Performance Comparison of Safeguard vs Non-Safeguard Models: OpenML100
high quality

® Dataset
—— Equal Performance L[]
S .
[o}
k)
> 0.8
w0 °
T .
©
>
D 6
Q 06 monks-problsgfs-1
Y= T—e
b
gs
— ® b
>
e}
C 04
= .
2
>
(%]
°
0.2 —
3
[¥]
(@]
<C
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Accuracy with Safeguard System

Fig. 6.8.: Performance Comparison of Safeguard vs Non-Safeguard Models: OpenML100
medium quality

6.1 Settings Affecting Performance (RQ1) 31

6.2

32

Linear-Ensembling versus Autogluon’s Built In

Semi-Supervised Learning Support (RQ2)

In this section, we answer the question: Does our linear-ensembling approach per-
form favorably to AutoGluon’s built in support for semi-supervised learning? As
described in Section 3.2, AutoGluon has experimental support for unlabeled data
to be used for training using a semi-supervised approach. We want to compare
our approach (see Chapter 4) to two different variations. The first variation is
comparing our approach (linear-ensembling, S1) to AutoGluon’s support for semi-
supervised learning (S2). The second variation is a hybrid approach (S3), where we
use AutoGluon’s support to train M1 and then using our approach to train M2. We
also compare S1’s M1 model to S2’s model, as the safeguard system is not in effect,
so sometimes the S1’s M1 model might have better results than S1’s M2 model.
We compare the performance using the “accuracy” measurement. The number of
datasets compared is fewer than the total number of datasets because of time limits
and pymfe errors. The percentage after the winning approach (“Winner”) are the
following formulas (for S1 & S2 and S1 & S3):

sy
winner% — 100+ d 15 151> 152]
% otherwise

_ 181
winner% = 100 x {|51+|Ss |S1] > [S3|
53|

TST153] otherwise

As we can see in the following tables, the performance is almost always better
after linear-ensembling (Table 6.7) and always better than just AutoGluon’s semi-
supervised support (Table 6.6). However, the performance of S1’s M1 model com-
pared to the S2 model is mixed (Table 6.5). For Table 6.8, S2 is sometimes better
than S1’s M2, but not always. This means that the purely semi-supervised sup-
port is sometimes better than our approach, excluding the safeguard system. What
we have learned is that semi-supervised support has worse performance than our
linear-ensembling approach, and it provides marginal benefits utilizing it for train-
ing M1.

We don’t show the graphs comparing safeguard vs non-safeguard performance, as

they change in performance is not really visible: there are almost no outliers.

Chapter 6

Datasets |S1| better |S2| better |EqualPer f]| Winner
OpenML100 15 21 43 S2 (58.3%)
OpenML-CC18 12 14 28 52 (53.8%)
CD1 11 2 12 S1 (84.6%)
CD2 39 28 24 S1 (58.2%)
CD3 6 8 8 S2 (57.1%)
Tab. 6.5.: Comparing S1’s M1 model to the S2 model
Datasets |S1| better |S3| better |EqualPer f]| Winner
OpenML100 30 24 25 S1 (55.6%)
OpenML-CC18 20 18 16 S1 (52.6%)
CD1 17 6 2 S1(73.9%)
cD2 36 28 27 S1 (56.2%)
CD3 7 3 12 S1 (70.0%)
Tab. 6.6.: Comparing S1’s M1 model to S3’s M2 model
Datasets |S1| better |S3| better |EqualPer f]| Winner
OpenML100 19 16 44 S1 (54.3%)
OpenML-CC18 9 16 29 S3 (64.0%)
CD1 11 5 9 S1 (68.8%)
cD2 35 28 928 S1 (55.6%)
CD3 6 2 14 S1 (75.0%)
Tab. 6.7.: Comparing S1’s M2 model to S3’s M2 model
Datasets |S1| better |S2| better |EqualPer f| Winner
OpenML100 31 27 21 S1 (53.4%)
OpenML-CC18 25 18 11 S1(58.1%)
CD1 9 14 2 S2(60.8%)
D2 33 37 21 S2 (52.8%)
CD3 7 7 8 Equal (50%)

Tab. 6.8.: Comparing S1’s M2 model to S2

6.2

Linear-Ensembling versus Autogluon’s Built In Semi-Supervised 33

Learning Support (RQ2)

6.3 Meta-Features (RQ3 and 4)

34

In this section, we answer two research questions. The first: Is there a way to
predict the performance of a certain dataset? This means predicting how much the
accuracy of M2 will change in comparison to M1, when training on a certain dataset.
If the accuracy increases (positive change), then the predictor should predict “plus”,

otherwise (negative change) it should predict “minus”.

As we can see in Figure 6.9, we are able, to some degree of accuracy, predict which

dataset will behave how when running our linear-ensembling pipeline.

100 ® ®
° ® L ..
)

80 - b
D
é L]
k=) o
% 60 -
3 e°
[T
o
W ®
& 40 %o
: .
@
e
& °

20 'o‘

® L
0 -
T T T T
—0.15 -0.10 —0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Fig. 6.9.: Percentage of data ignored vs change in accuracy (accuracyye — accuracypr).
Each dot represents a dataset. Orange is classifier predicting a positive change.
Blue is negative change. Red is an error with the safeguard system.

We achieve this by training a classifier on 1) meta-features of the dataset and 2)
the outcome of multiple dataset runs. This classifier system powers our safeguard
system (see Section 4.2), which uses the predicted outcomes to decide whether to
select M1 or M2 as the final model, and whether it is worth it to train M2.

We therefore ask our second research question: which meta-features perform the

best for the safeguard system?

Chapter 6

We have tried a few different meta-features to try and see which provide the best
output from the classifier. The very first tests were done using the meta-features
found on openml.org by parsing the html code using the BeautifulSoup library!.
This was less successful, as the amount of overlap between meta-features on the
different pages was very low, and it relied on the dataset being on openml.org.
The second tests were done using the “general” [Alc420] group of meta-features
from pymfe. This group of meta-features did not provide a great deal of insight
for the predictor, as most of the features are very simple and not very meaningful
(e.g., number of items in the dataset). This leads us to trying the “model-based”
and “landmarking” meta-features, whereby simple ML models are trained and the
characteristics/performance metrics of these models is returned [Alc+20]. Although
these models are very simple, they can give an insight into what characteristics the
dataset will have, and is therefore perfect for our safeguard system, which tries
to infer based on the performance of models. We also utilized “clustering” based
meta-features, as these were also utilized in the AutoSSL approach as described in
Section 3.1.

Our experiments show that a lot of “landmarking” features have negative impact on
the model output (Figure 6.10). The reason it does not perform well is that it only
returns the performance values of certain algorithms, which is not as meaningful
to infer how the data will behave for linear-ensembling. Furthermore, no matter
the settings for landmarking, we do not achieve very good performance on CD3, as

there are a lot of false negatives.

“Model-based” has more impactful features, but each individually has less impact
(Figure 6.11).

“Clustering” has impactful features, only one has no impact (Figure 6.12). This
feature (sc, i.e., size of cluster) has no impact because it “[cJompute[s] the number
of clusters with size smaller than a given size”[@QEde], the default being 15, but for

our results this never seems to happen.

Ultimately we have found that both “clustering” and “model-based” meta-features
provide good and similar performance for the safeguard system. We therefore com-
bined the two: Figure 6.13.

We have also learned that training with more datasets leads to better results in
OpenML100, but not necessarily CD3.

"https://www. crummy . com/sof tware/BeautifulSoup/

6.3 Meta-Features (RQ3 and 4)

35

openml.org
openml.org
https://www.crummy.com/software/BeautifulSoup/

36

100 - o0 °
L
[] L ¢
® o

- 80 4
5 * ° ° *
5 ¢ e
= "

.)
o ® ® (N ®
" o o e o
g 401 e
c ¢ @
o *
E L

20 - e
L]
I3
0 .
-0.15 -0.10 —0.05 0.00 0.05 0.10
Change in accuracy (after-before)
Fig. 6.10.: RandomForestClassifier Result (Landmarking): Trained on OpenML100,

OpenML-CC18, CD1, CD2, run on CD3 — bad generalization. Each dot rep-
resents a dataset. Orange is classifier predicting a positive change. Blue is
negative change. Red is an error with the safeguard system.

Chapter 6

100 - oo b o
o q
¢ .0 I . o
- 80 o
4
g \J
© 60 ° ™ b ®
o}
- ° ®
o ®
. ° ¢ .
g]
E @
20 - e
o
L
0_
-0.15 —-0.10 —0.05 0.00 0.05 0.10
Change in accuracy (after-before)
Fig. 6.11.: RandomForestClassifier Result (Model-Based): Trained on OpenML100,

OpenML-CC18, CD1, CD2, run on CD3 — ok generalization. Each dot rep-
resents a dataset. Orange is classifier predicting a positive change. Blue is
negative change. Red is an error with the safeguard system.

6.3 Meta-Features (RQ3 and 4)

37

38

100 - oo o
9 L
® e ® °

80 ~
k5
= L L
2 L L ®
= e
% 60 ° * ®
S] [°® PY]
=) L] { T |
u ® ®
240 - e
€ Y
o
b e
E @

20 1 ° bt

L
-
0 .
T T T
—-0.15 -0.10 —0.05 0.00 0.05 0.10
Change in accuracy (after-before)
Fig. 6.12.: RandomForestClassifier Result (Clustering): Trained on OpenML100,

OpenML-CC18, CD1, CD2, run on CD3 — ok generalization. Each dot rep-
resents a dataset. Orange is classifier predicting a positive change. Blue is
negative change. Red is an error with the safeguard system.

Chapter 6

Percentage of data ignored

Fig. 6.13.: RandomForestClassifier Result (Clustering + Model-Based):

100 - PP o
® L
[] [] ™ °
80 -
@ ™
L L ®
\J ®
60 - ° e & . °
® ® ® L
o 8
® L ®
40 - ®
e @
™ ® L
20 ® ® o
0 .
T T T T
-0.15 —0.10 —0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Trained on

OpenML100, OpenML-CC18, CD1, CD2, run on CD3 — better generaliza-
tion. Each dot represents a dataset. Orange is classifier predicting a positive
change. Blue is negative change. Red is an error with the safeguard system.

6.3 Meta-Features (RQ3 and 4)

39

6.4

40

Furthermore, good performance on OpenML100 or CC18 do not necessarily lead to
good results on the custom datasets and vice-versa. We see this when comparing
Figure 6.13 to Figure 6.14, where in Figure 6.13 there are a lot more “minus” outliers

in the positive area.

100 - ° °
. . °

80
3 .
=}
5 .
= 60 o
3 ! A
Y
(=]
©]
on
& 401 T:
[
L}
o
& °

20 e Seel o

ogt
0 -
-0.15 -0.10 -0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Fig. 6.14.: RandomForestClassifier Result (Clustering + Model-Based): Trained on
OpenML100, OpenML-CC18, CD1, CD2, run on OpenML100 — good result

The preceding figures are RandomForestClassifier based. We will elaborate on

why this classifier was chosen over the AutoGluon one in the next section.

Safeguard System (RQ5)

In this section, we answer the research question: which models and settings influence

the performance of the safeguard system?

We compare the performance along 2 directions. The first is which classifier we use
for the safeguard system, scikit-learn’s RandomForestClassifier (Subsection 6.4.2),
or AutoGluon’s TabularPredictor (Subsection 6.4.1). For the AutoGluon classi-
fier we also look at custom metrics as defined in Section 5.3 to modify the behavior

of the classifier. The second direction is looking at meta-feature performance and

Chapter 6

relevance, including using metrics from the SHAP library, as described in Subsec-
tion 5.4.1.

To measure the benefit of the safeguard system, we measure the mean accuracy
with and without utilizing the safeguard system. If the mean accuracy is better or
the same, this means the safeguard system has a positive benefit overall, if not, it
has a negative benefit. Over a total of 32 runs, 8 runs had worse performance. This

includes versions of the safeguard system with less than optimal settings.

When we compare AutoGluon to scikit-learn looking at Figure 6.16 vs Figure 6.15,
we can see that AutoGluon barely makes any “minus” (blue circle) predictions, i.e.,
it almost never thinks that the performance will be decrease, which makes it pretty

useless as a predictor.

100 ® ‘ ®
° ® ® ..
[

80 1
D
é L
=3 *
T 60
T ®. 9
o >
g
=]
T ®
o
@ 40
IS ® ..
@
¢
& °

20 1 A Y

]
0 -
T T T T
—-0.15 —0.10 —0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Fig. 6.15.: RandomForestClassifier: Percentage of data ignored vs change in accuracy
(accuracypre — accuracypsr). Each dot represents a dataset. Orange is clas-
sifier predicting a positive change. Blue is negative change. Red is an error
with the safeguard system.

6.4 Safeguard System (RQ5)

100 - .
4
®

80 -
-
g
[=]
=
k=
S 60
(1]
=
g
o
w ®
& 401 . %
G
O
1]
o

20 - v

@
0 ¢
T T T T
—0.15 ~0.10 ~0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Fig. 6.16.: AutoGluon: Percentage of data ignored vs change in accuracy (accuracyyrs —
accuracyyry). Each dot represents a dataset. Orange is classifier predicting a
positive change. Blue is negative change. Red is an error with the safeguard
system.

Chapter 6

6.4.1 AutoGluon

The performance of the safeguard system implemented using AutoGluon’s TabularPredictor.

Of the 7 runs using the AutoGluon safeguard system, 3 had worse performance.

Even though AutoGluon has mostly positive performance, the predictor does not
work very well. It mostly predicts “plus”, i.e., that the performance will be better,
even when it will not be. As described before, we look at custom metrics to try
and influence this behavior, but it has little effect. The following models and the
resulting figures are trained on OpenML100 and OpenML-CC18, and run on CD3.

They utilize the model-based meta-features.

One way we try to influence the classifier is to highly negatively weigh false posi-
tives (FP, “plus”), to try and get more true negatives. The results can be seen in

Figure 6.17. As we can see, the results are still not great.

100 A o0 °
I]
[] L] ® ®
80 J
g ®
=] [
E] . o ¢
% 60 - ° @ ° ®
s ®
b []
W ®
g 40 .
g ® ®
&
20 e
L]
0_
T T T
—-0.15 —0.10 —0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Fig. 6.17.: Custom Metric: Percentage of data ignored vs change in accuracy
(accuracypres — accuracyyrr). Orange is classifier predicting a positive change.
Blue is negative change. Red is an error with the safeguard system.

Another approach is using fz scoring, whereby we set 8 = 2 and 8 = 0.5, so that we
are able to increase the roll of recall and precision. As can be seen in Figure 6.18,

setting 8 = 2 has little effect, as the classifier still predicts almost all “plus”.

6.4 Safeguard System (RQ5) 43

44

100 o o
I L
L] ® ®

80 ~
- L 4
g
o L
) * H
= 60 - ° @ b e
° ®
by ®
@w L]
7 401
€ °
(]
vl ®
E ®

20 ®

[]
0_
T T T
—-0.15 -0.10 —0.05 0.00 0.05 0.10
Change in accuracy (after-before)
Fig. 6.18.: fz (8 = 2) metric: Percentage of data ignored vs change in accuracy

(accuracyyre — accuracyprr). Each dot represents a dataset. Orange is clas-
sifier predicting a positive change. Blue is negative change. Red is an error
with the safeguard system.

Chapter 6

Similarly, as can be seen in Figure 6.19, setting § = 0.5, also has no effect. There
are fewer datapoints and a lot are clustered around (0,100%), as this was run with

high quality and was not able to complete in the time limit.

100
=] ED _
z
=]
=
=2
3
@ 60
=
G
L
=h
m
1=
o 40
=
i)

(=1
20 1
T T T
—0.15 -0.10 —=0.05 0.00 0.05 0.10

Change in accuracy {(after-before)

Fig. 6.19.: fz (8 = 0.5) metric: Percentage of data ignored vs change in accuracy
(accuracypre — accuracynrr). Each dot represents a dataset. Orange is clas-
sifier predicting a positive change. Blue is negative change. Red is an error
with the safeguard system.

The third approach, which is a little better, is using F1 scoring, as described in

Section 5.3. The results can be seen in Figure 6.20

We can also see this phenomenon of the safeguard system not providing good per-
formance with “landmarking” (Figure 6.21) and “clustering” (Figure 6.22) meta
features by looking at the performance comparison of safeguard vs non-safeguard

models.

6.4 Safeguard System (RQ5)

45

46

100 - P o
L 1
[] L] ® I ®
80 l
g ®
o L]
k) . P e
® 601 . @ * ¥ °
T °
s . 1
v °
g 40 .
g ® ®
¢
20 - L
[]
0 -
T T T
-0.15 -0.10 —0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Fig. 6.20.: F1 metric: Percentage of data ignored vs change in accuracy (accuracyyre —
accuracyy). Each dot represents a dataset. Orange is classifier predicting a
positive change. Blue is negative change. Red is an error with the safeguard
system.

1.0
e Dataset
—— Equal Performance

b o o
= EY 3

Accuracy without Safeguard System

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Accuracy with Safeguard System

Fig. 6.21.: AutoGluon: Performance Comparison of Safeguard vs Non-safeguard Models
(Landmarking)

Chapter 6

6.4.2

® Dataset
—— Equal Performance

14 =4 o
S o o

Accuracy without Safeguard System

0.0

0.0 0.2 0.4 0.6 0.8 10

Accuracy with Safeguard System

Fig. 6.22.: AutoGluon: Performance Comparison of Safeguard vs Non-safeguard Models
(Clustering)

As the safeguard system always predicts plus, the mean is the same for both (Ta-

ble 6.9) and each dataset has equal performance.

Meta-Features Mean with Safeguard System Mean Is Same?
Landmarking 0.6675 0.6675 True

Clustering 0.6675 0.6675 True

Tab. 6.9.: AutoGluon: Comparison of Mean with Safeguard System and Mean for Different
Meta Features

In conclusion, the AutoGluon predictor does not seem to be the optimal solution for
our safeguard system. We therefore look at scikit-learn’s RandomForestClassifier

in the next section.

RandomPForestClassifier

In this section, we take a look at the performance of the safeguard system imple-
mented using scikit-learn’s RandomForestClassifier [@Qdevd]. For the 25 runs
using the RandomForestClassifier, 5 had worse performance. This includes ver-
sions of the safeguard system with less than optimal settings, 4 of which had worse

performance.

6.4 Safeguard System (RQ5)

47

As we can see in the following figures and table (Table 6.10), the scikit-learn based

safeguard system almost always performs better with it than without.

Corresponding Figure Mean with Safeguard System Mean Is Better?

Figure 6.23 0.7184 0.7103 True
Figure 6.24 0.7831 0.7764 True
Figure 6.25 0.7121 0.7019 True
Figure 6.26 0.7160 0.7101 True
Figure 6.27 0.6953 0.6966 False
Figure 6.28 0.7918 0.7867 True

Tab. 6.10.: AutoGluon: Comparison of Mean with Safeguard System and Mean. “Is Bet-
ter?” being “True” means that the mean with safeguard system is larger than
the mean without it.

10
e Dataset
—— Equal Performance L]

fri_c0_100_5
. |
® haberman
o .
fri_c2 1005 fri_cd_100 25 iris
. . I

o
3

ri_c0_100_5
e

o o
= o

Accuracy without Safeguard System

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Accuracy with Safeguard System

Fig. 6.23.: scikit-learn: Performance Comparison of Safeguard vs Non-safeguard Models
(Clustering)

The only example where this is not the case (Figure 6.27) shows the limitation
of purely model-based meta-features in certain cases. However, changing to using
bootstrap=False as an option, the performance is better with the safeguard system
(Figure 6.28).

Chapter 6

Accuracy without Safeguard System

Fig. 6.24.: scikit-learn: Performance Comparison of Safeguard vs Non-safeguard Models

Accuracy without Safeguard System

Fig. 6.25.: scikit-learn: Performance Comparison of Safeguard vs Non-safeguard Models

10

e Dataset
—— Equal Performance []
°
0.8 4
L]
®

0.6 1

monks-problegts-1

e
gs
[}
0.4 1 °
0.2 4 o
0.0 T T T T
0.0 0.2 0.4 0.6 0.8

Accuracy with Safeguard System

(Model-Based + Clustering): Run on OpenML100

e
@
L

e
o
L

o
IS
\

e
)
L

0.0

e Dataset pwlinear o®
— Equal Performance o k(l‘-b\r
teachingAssistagoer® @
e
ard . fri_c4_100_25]
s b 2e—2
[}
fri_c2_100_10 analcatdata_chlamydia
s o ° .
s
_ . _ ._7_*5Ieuth7case2002
Pea 1000 ©

0.0

0:4 0.‘6
Accuracy with Safeguard System

0.2 0.8

(Model-Based + Clustering): Run on CD3

6.4 Safeguard System (RQ5)

1.0

ary

1.0

49

10

e Dataset
—— Equal Performance ° tae
IS . . D
[}
‘J; jEdit 4.0 42 ° 25010
9 oz 2o
n o
wine fri_c2_250_50
e . .
g . rabe_266 —
D o6
O °¢ hayes-roth
U= 4
©
wn
-
3
E 0.4
=
>
[e]
o
0.2
3
O
(V]
<
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10

Accuracy with Safeguard System

Fig. 6.26.: scikit-learn: Performance Comparison of Safeguard vs Non-safeguard Models

(Landmarking)
Lo
e Dataset 200 .
—— Equal Performance L] es-roth
€ auto_price _ Sub-ggrice .
g — —
is e
g 0.8 - . £
0
.
'9 °
(]
=]
@ 250 10
8 0.6 .
—
[j+]
0
)
3
E 0.4
E—
2
>
[®]
o
5 o0z
(V]
(@]
<
0.0 - . - -
0.0 0.2 0.4 0.6 0.8 10

Accuracy with Safeguard System

Fig. 6.27.: scikit-learn: Performance Comparison of Safeguard vs Non-safeguard Models
(Model-Based) — Bad Performance

Chapter 6

® Dataset
—— Equal Performance

o
o

=4
o

irish
L

mozillad

14
S

Accuracy without Safeguard System

0.0

0.0 0.2 0.4 0.6 0.8 10

Accuracy with Safeguard System

Fig. 6.28.: scikit-learn: Performance Comparison of Safeguard vs Non-safeguard Models
(Model-Based) — Good Performance

We can also see the benefits of no bootstrapping in the following graphs (Figure 6.29
and Figure 6.30), where the classifier predicts more datasets correctly. Furthermore,
we can see how important keeping model-based meta-features (Figure 6.30 vs Fig-
ure 6.31) is, as clustering and model-based lead to different dataset subsets being
marked as negative correctly (blue circles). If we solely used clustering or model-

based there would be quite a few more datasets which get overlooked for each.

We can also see how well clustering performs on both OpenML100 (Figure 6.32)
and CD3 (Figure 6.33) compared to AutoGluon and in general.

6.4 Safeguard System (RQ5)

o1

52

100 + . PY e @ ‘ °
L
®

80 b
-
g
=
)
=
© 60
g L
Y
[=]
© e
g 40 - | N
£ L
5]
¥
o
a

20 A] L

® -
0 -
-0.15 -0.10 —0.05 0.00 0.05 0.10
Change in accuracy (after-before)

Fig. 6.29.: scikit-learn: Percentage of data ignored vs change in accuracy. Each dot rep-
resents a dataset. Orange is classifier predicting a positive change. Blue is
negative change. Red is an error with the safeguard system.

100 . .
°]
L]

80
-
g
<)
] °
o 60
= L
g L
g
o
w []
T 40 -
—
c
)
4
& .

20 - o See

® 4%
0 -
T T T T
—0.15 -0.10 —0.05 0.00 0.05 0.10
Change in accuracy (after-before)
Fig. 6.30.: scikit-learn: Percentage of data ignored vs change in accuracy. Each dot rep-

resents a dataset. Orange is classifier predicting a positive change. Blue is
negative change. Red is an error with the safeguard system.

Chapter 6

100 - ° Y
® L]
. °
|
80 -
©
= L] L]
=
=
© 60 °
S e°
‘B
W []
2 40 ¢
i)
=
@
o
& .
20 - * oe
'S
0 .
T T T T
-0.15 —0.10 —0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Fig. 6.31.: scikit-learn: Percentage of data ignored vs change in accuracy. Each dot rep-
resents a dataset. Orange is classifier predicting a positive change. Blue is
negative change. Red is an error with the safeguard system.

100 - o9 o
® L
@ | I °
80 -
2
g o °
= [¢ o
2 e
s 60 o e & °
o L [] e® ® ®
=) L] L I |
& ¢ b
3 40 - e .
°
o o o
&
20 ° et
°
0_
T T T T
-0.15 -0.10 -0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Fig. 6.32.: scikit-learn: Percentage of data ignored vs change in accuracy. Each dot rep-
resents a dataset. Orange is classifier predicting a positive change. Blue is
negative change. Red is an error with the safeguard system.

6.4 Safeguard System (RQ5)

o4

100 ® e
] . ¢ [
@

80 - *
b
= @ L
) °
& 60 °
S [
5
W ®
& 40 °
= |
@
¢
E ® []

20 - ® %ee °

e 3%
0 .
—0.15 —0.10 —0.05 0.00 0.05 0.10

Change in accuracy (after-before)

Fig. 6.33.: scikit-learn: Percentage of data ignored vs change in accuracy. Each dot rep-
resents a dataset. Orange is classifier predicting a positive change. Blue is
negative change. Red is an error with the safeguard system.

In conclusion, we can see how well the scikit-learn based RandomForestClassifier
performs. With only one minor tweak (setting bootstrap=False), the classifier
performs well and is useful as a safeguard system. This is in contrast to the Au-
toGluon system, which provided worse predictive performance by choosing “plus”
almost always (orange circles). Furthermore, the RandomForestClassifier was
much easier to debug and tune, as it is very simple. We therefore selected the

RandomForestClassifier over the AutoGluon based version.

6.4.2.1. SHAP and MDI Evaluation

In this section, we will look at the meta-features importance values as defined by
their SHAP value and their MDI (mean decrease in impurity), as described in
Section 5.4.

As can be seen in Figure 6.34 and Figure 6.35 there is a lot of variance around the

mean for both model-based and landmarking based meta-features. This means that

Chapter 6

their importance is inconsistent, which leads to less predictability. Furthermore, no

feature (landmarking or model based) is very prominent.

0.20 4
o, 0.15
——
=
=
[=8
£
c 0.10 4
@
%}
o
e
W
[il] -
L 005
=
mn
10}
: |
0.00 -
_0'05IIIIIIIIIIIIIIIIIIIIIIII
Lo I I S T L T T = o N+ o B = (R Y o T 1 T o T = o » v S T o T Y A
S555555555pppppppppppppy
P EECECEECEEEETRETREEEETR 5
e e e el Y F NN ¥ N ¥ VN V¥ I I VI VI IV I P P ¥}
e M= M= M e M Me M e B e e e M

Fig. 6.34.: Feature Importances (Model-based) for OpenML100 using MDI

This is in comparison to clustering, as can be seen in Figure 6.36, where there is
not a lot of variance. Feature 4 is the SC feature, as already defined in Section 6.3

and it is the only one which has no significance.

Looking now at the mean SHAP value graphs, we can again see that impact of each

individual feature is very low for model-based (Figure 6.37).

This is somewhat different for landmarking based features (Figure 6.38), where we

can see that elite_nn.sd and one_nn.mean are more significant features in terms
of their mean SHAP values.

6.4 Safeguard System (RQ5)

55

JMMH

- €T 24njeay

- ZT 24njea)

- 1T 24njeay

- 0T 24n3eay

- 6 2injeay

- g 2injeay

-/ 2injeay

-9 2injeay

- G ainjeay

- ¢ 24njeay

- € 2unjeay

- 7 ainjeay

- T 2unjeay

- 0 2injeay

0.20 +

T T T
7 [=] [Ty
— — =]
o o o
Aunduw ul asealdap ueap

0.00 +

Fig. 6.35.: Feature Importances (Landmarking) for OpenML100 using MDI

£ 2imea}

g ainjeay

g ainjeay

I,

- ¥ 24njeal

£ ainjea)

7 2imea}

1 24nje3)

0 2injeay

"

T T
(=] (=]
(] [

0.00 -

T T T
T) 1
™ — <
S oS o] S S

Aunduwi ur aseaudap uea

Fig. 6.36.: Feature Importances (Clustering) for OpenML100 using MDI

Chapter 6

56

nodes_per_inst
leaves_corrob.sd
tree_imbalance.sd
nodes
nodes_repeated.sd
nodes_per_level.sd
leaves
leaves_homo.mean
var_importance.mean

Sum of 15 other features

0.00 0.05 0.10 D.iS 0.20 0.25
mean(|SHAP valuel)

Fig. 6.37.: Mean SHAP Values (Model-Based)

elite_nn.sd
one_nn.mean
elite_nn.mean
naive_bayes.sd
one_nn.sd
best_node.mean
random_node.mean
best_node.sd
naive_bayes.mean

Sum of 5 other features

T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12
mean(|SHAP valuel|)

Fig. 6.38.: Mean SHAP Values (Landmarking)

6.4 Safeguard System (RQ5) 57

o8

Finally we see that the clustering based features (Figure 6.39) have around the

same mean SHAP values, other than sc (see above).

int +0.07

pb +0.06
vdb
ch
vdu
sil

nre

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
mean(|SHAP value])

Fig. 6.39.: Mean SHAP Values (Clustering)

The final graphs (beeswarm) we examine are: Figure 6.40, Figure 6.41 and Fig-
ure 6.42, which show the actual SHAP values and their impact on model output.

Chapter 6

nodes per inst
leaves_corrob.sd
tree_imbalance.sd
nodes

nodes repeated.sd
nodes_per_level.sd
leaves

leaves homo.mean
var_importance.mean

Sum of 15 other features

Hig

03 0.2 0.1 0.0 01
SHAP value (impact on model output)

Fig. 6.40.: SHAP Values (Model-Based)

elite_nn.sd
one_nn.mean
elite_nn.mean
naive_bayes.sd
one_nn.sd
best_node.mean
random_node.mean
best_node.sd
naive_bayes.mean

Sum of 5 other features

cehe oo * oo o 0ot o

o Bole

—0.4 03 02 —0.1 0.0 01
SHAP value (impact on model output)

Fig. 6.41.: SHAP Values (Landmarking)

High

Low

6.4 Safeguard System (RQ5)

h

Feature value

Feature value

99

6.4.3

60

High
int
pb

vdb
ch

vdu

Feature value

sil

nre

sC

Low

01 00 01 02 03 04 05 06
SHAP value (impact on model output)

Fig. 6.42.: SHAP Values (Clustering)

This includes a spectrum of blue and red, whereby the color is the “original value
of a feature” [@Lunb]. This means for each data point the original value of each
feature, e.g., for sc, the value is always zero in the above graphs (so all blue). As
we can see, landmarking (Figure 6.41) has a lot of features with large negative and
spread out SHAP values. This is in contrast to model-based (Figure 6.40) and

clustering (Figure 6.42), where there are not as many spread out values.

In conclusion, using the information provided by the SHAP library and the MDI,
we can deduce the model-based and clustering meta-features provide very good and

predictable information, and should therefore be used.

Conclusion

We can see that the safeguard system provides a net benefit for most applications. It
enables savings in compute time by eliminating the need for computing M2, with the
RandomForestClassifier introducing very little overhead. We have found which
settings affect the performance of M2, mainly the threshold and quality parameters.
Furthermore, we have found that our approach compares favorably to AutoGluon’s

built-in semi-supervised learning support.

Chapter 6

Another aspect we have explored is how to predict dataset performance using meta-
features and which ones perform the best for our safeguard system. Our results
show that model-based and clustering meta-features are the best for our approach.
Finally, we have explored the models and settings which impact our safeguard sys-

tem, leading to the selection of the better performing RandomForestClassifier.

Overall, our results demonstrate that better performance can be achieved by utiliz-

ing unlabeled data, which has been labeled by a separately trained model.

6.4 Safeguard System (RQ5)

61

7.1

Conclusion

We have shown how semi-supervised models can have better performance when
trained on small amounts of labeled data. Through our novel approach, known as
linear-ensembling, we are able to provide better performance overall, compared to
both a supervised learning and AutoGluon’s semi-supervised approach, despite not

achieving 100% accuracy.

We have investigated which factors could lead to poor performance at the end of a
learning process, such as the threshold or AutoGluon’s quality configurations and
the meta-features of the dataset to be trained on. We have identified clustering and
model-based meta-features as particularly meaningful in predicting how a dataset
will perform. To take advantage of this information, we have introduced our safe-
guard system. This system is able to leverage the improved accuracy from our
linear-ensembling approach, while reducing computational resources and run times

by eliminating unnecessary model training.

Furthermore, our findings have shown that the issues with performance loss can be

eliminated without time-consuming steps needing to be taken.

Finally, we provide valuable guidance for future research, by identifying which set-
tings and meta-features are the most useful and provide the best results. This
includes which factors affect the performance of the safeguard system itself, such
as the choice between scikit-learn and AutoGluon. These insights offer a clear

direction forward for further research with diverse datasets and applications.

Future Work

There are several directions for future work. A further improvement and general-
ization of the safeguard system can include training it on more datasets, tuning the
various settings of the RandomForestClassifier, or possibly selecting a different

classifier model. Another area of research could be further refining the selection

63

64

of the meta-features and increasing the robustness of the pymfe system to make it
more useful for the safeguard system. A third direction concerns a more hybrid ap-
proach, where a human would verify /change some pseudo-labeled results, e.g., the
lowest confidence ones, to improve the performance of M2. The fourth direction is

expanding our work to non-classifier based labeling systems with AutoML.

Chapter 7

Al

© 00 ~N o o b W N o=

==
N = O

Appendix

Custom Datasets

These are the list of all datasets used from [FSE18] as lists of openml . org dataset ids.
They are divided into 3 dataset groups: CD1 (Custom Data-group 1) (Listing A.1),
CD2 (Listing A.2) and CD3 (Listing A.3).

(3, 6, 12, 14, 16, 18, 20, 21, 22, 26, 28, 30, 32, 36, 44, 46, 60,
151, 155, 161, 162, 180, 182,

183, 184, 197, 209, 279, 287, 294, 300, 312, 375, 389, 391,
395, 398, 720, 958, 959, 962, 971, 976, 978, 979, 980,

991, 995, 1019, 1020, 1021, 1022, 1036,

1038, 1040, 1041, 1043, 1044, 1046, 1050, 1067, 1116, 1120,
1169, 1217, 1236, 1237, 1238, 1457,

1459, 1460, 1471, 1475, 1481, 1483, 1486, 1487, 1489, 1496,
1501, 1503, 1505, 1507, 1509, 1527,

1528, 1529, 1531, 1533, 1534, 1535, 1537, 1538, 1539, 1540,
1557, 1568, 4134, 4135,

4534, 4538, 40474, 40475, 40476, 40477, 40478]

Listing A.1: CD1

65

openml.org

© 00 ~N o o A W N o=

e e e o
cn A W NN =R O

66

(11, 15, 23, 29, 31, 37,
313, 333, 334, 335, 377,
386, 392, 394, 400, 401,
679, 715, 717, 718, 723,
749, 750, 751, 766, 770,
795, 797, 799, 805, 806,
827, 837, 838, 841, 845,

866, 869, 870, 872, 879,
903, 904, 910, 912, 913,
931, 934, 936, 937, 943,

987, 994, 997, 1004,

1063, 1137, 1145,
1453, 1454, 1464,

50, 54, 181, 223, 292, 307,
383, 385,
458, 469, 478,
740, 741, 742, T43,
774, 779, 792,
813, 824, 825, 826,
849, 853, 855,
884, 886, 888, 896,
917, 920, 926,
949, 954, 970, 983,
1014, 1016, 1049,
1168, 1165, 1443, 1444, 1451,
1467, 1472, 1510, 1542,

15643, 1545, 1546, 3560, 3904,

3917]
Listing A.2: CD2

Appendix A

© 0 N o o b~ W N

N N N RN N N NN R B R oE = R
~N o o b~ WN B O © 00N OO OB~ W N = O

A2

[8, 10, 39, 40, 41, 43, 48, 49, 53, 59, 61, 62, 164,
187, 285, 329, 336, 337, 338, 384,

387, 388, 397, 444, 446, 448, 461, 463,

464, 475, 685, 694, 714, 716, 719, 721, 724,
726, 730, 732, 733, 736, 744, 745, 746,

747, 748, 753, 754, 756, 762, 763, 768, 769,
rr1, 773, 775, 776, 778, 782, 783, 784,

788, 789, 793, 794, 796, 801, 808, 811, 812,
814, 818, 820, 828, 829, 830, 832, 834,

850, 851, 860, 863, 865, 867, 868, 873, 875,
876, 877, 878, 880, 885, 889, 890, 895,

900, 902, 906, 907, 908, 909, 911, 915, 916,
918, 921, 922, 924, 925, 932, 933, 935,

941, 952, 955, 9566, 965, 969, 973, 974, 996,
1005, 1006, 1011, 1012, 1013, 1025, 1026,
1045, 1048, 1054, 1059, 1061, 1064, 1065,
1066, 1071, 1073, 1075, 1077, 1078, 1080,
1084, 1100, 1106, 1115, 1121, 1122, 1123,
1124, 1125, 1126, 1127, 1129, 1131, 1132,
1133, 1135, 1136, 1140, 1141, 1143, 1144,
1147, 1148, 1149, 1150, 11561, 1152, 1153,
1154, 1155, 11566, 1157, 11569, 1160, 1162,
1163, 1164, 1167, 1412, 1413, 1441, 1442,
1446, 1447, 1448, 1449, 1450, 1455, 1473,
1482, 1488, 1498, 1500, 1508, 1512, 1513,
1519, 1520, 1556, 1565, 1600, 3902, 3913,
4153, 4340]

Listing A.3: CD3

Safeguard System Training Procedure

Using the output from previous runs of a dataset group, CSV files are generated
which contain the meta features of each dataset (see Section 2.5) and plus or minus

indicating whether M2 performed better than M1 according to the “accuracy”
performance measurement. These CSV files are then used to train the safeguard

classifier, using a variety of performance metrics, as described in Section 5.3. This

A.2 Safeguard System Training Procedure

67

68

classifier can then be used for new datasets that it has not seen previously and

provide guidance whether M2 will perform better and is worth training.

Appendix A

Bibliography

[Alc+20]

[And10]

[Ara+20]

[Ast+15]

[Bar89]

[BK96]

[Bis+21]

[Carl9]

[CR18]

[Dat]

[Del96]

[Din+21]

Edesio Alcobaga, Felipe Siqueira, Adriano Rivolli, et al. “MFE: Towards repro-
ducible meta-feature extraction”. In: Journal of Machine Learning Research
21.111 (2020), pp. 1-5 (cit. on pp. 6, 7, 35).

Réazvan Andonie. “Extreme data mining: Inference from small datasets”. In:
International Journal of Computers, Communication & Control (2010) (cit.
on p. 3).

Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuin-
ness. “Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learn-
ing”. In: 2020 International Joint Conference on Neural Networks (IJCNN).
2020, pp. 1-8 (cit. on p. 15).

Marco Aste, Massimo Boninsegna, Antonino Freno, and Edmondo Trentin.
“Techniques for dealing with incomplete data: a tutorial and survey”. In: Pat-
tern Analysis and Applications 18 (2015), pp. 1-29 (cit. on p. 2).

Horace B Barlow. “Unsupervised learning”. In: Neural computation 1.3 (1989),
pp. 295-311 (cit. on p. 1).

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository.
1996 (cit. on p. 2).

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, et al. OpenML Bench-
marking Suites. 2021. arXiv: 1708.03731 [stat.ML] (cit. on p. 18).

M Carlisle. “A Boston housing dataset controversy” In: https://medium.
com/@docintangible/racist-data-destruction-113e3eff54a8. 2019 (cit.
on p. 2).

Alexandra Chouldechova and Aaron Roth. “The frontiers of fairness in machine

learning”. In: arXiv preprint arXiv:1810.08810 (2018) (cit. on p. 1).

Datagen. “Data-Centric Al: The New Frontier”. In: https://datagen.tech/
guides/data-training/data-centric-ai/ (cit. on p. 3).

Delve. “The Boston Housing Dataset”. In: https://www.cs. toronto.edu/
~delve/data/boston/bostonDetail .html. 1996 (cit. on p. 2).

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. “Retiring adult:
New datasets for fair machine learning”. In: Advances in neural information
processing systems 34 (2021), pp. 6478-6490 (cit. on p. 2).

69

https://arxiv.org/abs/1708.03731
https://medium.com/@docintangible/racist-data-destruction-113e3eff54a8
https://medium.com/@docintangible/racist-data-destruction-113e3eff54a8
https://datagen.tech/guides/data-training/data-centric-ai/
https://datagen.tech/guides/data-training/data-centric-ai/
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

[EH21] Jesper E. van Engelen and Holger H. Hoos. “Semi-supervised Co-ensembling
for AutoML”. In: Trustworthy Al - Integrating Learning, Optimization and Rea-
soning. Ed. by Fredrik Heintz, Michela Milano, and Barry O’Sullivan. Cham:
Springer International Publishing, 2021, pp. 229-250 (cit. on pp. 2, 9, 10, 13).

[Eri+20] Nick Erickson, Jonas Mueller, Alexander Shirkov, et al. “AutoGluon-Tabular:
Robust and Accurate AutoML for Structured Data”. In: arXiv preprint arXiv:2003.06505
(2020) (cit. on pp. 5, 6).

[Feu+15] Matthias Feurer, Aaron Klein, Katharina Eggensperger, et al. “Efficient and
Robust Automated Machine Learning”. In: Advances in Neural Information
Processing Systems 28 (2015). 2015, pp. 2962-2970 (cit. on pp. 2, 5, 9).

[FSE18] Nicolo Fusi, Rishit Sheth, and Melih Elibol. “Probabilistic Matrix Factoriza-
tion for Automated Machine Learning”. In: Advances in Neural Information
Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, et al. Vol. 31.
Curran Associates, Inc., 2018 (cit. on pp. 18, 65).

[Gij+23] Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, et al. AMLB: an AutoML
Benchmark. 2023. arXiv: 2207.12560 [cs.LG] (cit. on p. 6).

[HNPO9] Alon Halevy, Peter Norvig, and Fernando Pereira. “The unreasonable effec-
tiveness of data”. In: IEEFE intelligent systems 24.2 (2009), pp. 812 (cit. on

p. 1).

[HRT78] David Harrison Jr and Daniel L Rubinfeld. “Hedonic housing prices and the
demand for clean air”. In: Journal of environmental economics and management
5.1 (1978), pp. 81-102 (cit. on p. 2).

[He+19] Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. “Revisiting
self-training for neural sequence generation”. In: arXiv preprint arXiv:1909.13788
(2019) (cit. on pp. 1, 3).

[Kot+21] Milos Kotlar, Marija Punt, Z. Radivojevié, M. Cvetanovié¢, and V. Milutinovic.
“Novel Meta-Features for Automated Machine Learning Model Selection in
Anomaly Detection”. In: IEEE Access 9 (2021), pp. 89675-89687 (cit. on p. 7).

[Lat+17] Masitah Abdul Lateh, Azah Kamilah Muda, Zeratul Izzah Mohd Yusof, Noor
Azilah Muda, and Mohd Sanusi Azmi. “Handling a small dataset problem
in prediction model by employ artificial data generation approach: A review”.
In: Journal of Physics: Conference Series. Vol. 892. 1. IOP Publishing. 2017,
p. 012016 (cit. on p. 3).

[LeC98] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann.
lecun. com/exdb/mnist/ (1998) (cit. on p. 1).

[Lee+13] Dong-Hyun Lee et al. “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks”. In: Workshop on challenges in
representation learning, ICML. Vol. 3. 2. Atlanta. 2013, p. 896 (cit. on p. 6).

[Li419] Yu-Feng Li, Hai Wang, Tong Wei, and Wei-Wei Tu. “Towards automated semi-
supervised learning”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 01. 2019, pp. 4237-4244 (cit. on pp. 9, 10).

Bibliography

https://arxiv.org/abs/2207.12560

[LL17]

[Maa+11]

[MWH18]

[Mol20]

[Mur12]

[Ped+11]

[PD19]

[P1a98)

[Riv+18]

[Sch+-22]

[Scu65]

[SLH22]

[TGS10]

Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”™. In: Advances in Neural Information Processing Systems 30. Ed.
by I. Guyon, U. V. Luxburg, S. Bengio, et al. Curran Associates, Inc., 2017,
pp. 47654774 (cit. on pp. 22, 23).

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, et al. “Learning Word
Vectors for Sentiment Analysis”™. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies.
Portland, Oregon, USA: Association for Computational Linguistics, June 2011,
pp. 142-150 (cit. on p. 1).

Felix Mohr, Marcel Wever, and Eyke Hiillermeier. “ML-Plan: Automated ma-
chine learning via hierarchical planning”. In: Machine Learning 107.8-10 (2018),
pp. 1495-1515 (cit. on p. 5).

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020 (cit. on
p. 23).

Kevin P Murphy. Machine learning: a probabilistic perspective. 1st ed. MIT
press, 2012 (cit. on pp. 1, 2).

F. Pedregosa, G. Varoquaux, A. Gramfort, et al. “Scikit-learn: Machine Learn-
ing in Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825—
2830 (cit. on pp. 5, 6).

Bruno Almeida Pimentel and Andre CPLF De Carvalho. “A new data char-
acterization for selecting clustering algorithms using meta-learning”. In: Infor-
mation Sciences 477 (2019), pp. 203-219 (cit. on p. 7).

John Platt. “Using analytic QP and sparseness to speed training of support
vector machines”. In: Advances in neural information processing systems 11
(1998) (cit. on p. 1).

Adriano Rivolli, Luis PF Garcia, Carlos Soares, Joaquin Vanschoren, and An-
dré CPLF de Carvalho. “Towards reproducible empirical research in meta-
learning”. In: arXiv preprint arXiv:1808.10406 (2018), pp. 32-52 (cit. on p. 7).

Reva Schwartz, Apostol Vassilev, Kristen Greene, et al. “Towards a standard
for identifying and managing bias in artificial intelligence”. In: NIST special
publication 1270.10.6028 (2022) (cit. on pp. 1, 10).

Henry Scudder. “Probability of error of some adaptive pattern-recognition ma-
chines”. In: IEEE Transactions on Information Theory 11.3 (1965), pp. 363—
371 (cit. on p. 1).

Seonguk Seo, Joon-Young Lee, and Bohyung Han. “Unsupervised learning
of debiased representations with pseudo-attributes”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 16742-16751 (cit. on p. 1).

Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-Thieme. “Cost-sensitive
learning methods for imbalanced data”. In: The 2010 International joint con-
ference on neural networks (IJCNN). IEEE. 2010, pp. 1-8 (cit. on p. 20).

Bibliography

71

[Tho+13] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Auto-WEKA:
Combined Selection and Hyperparameter Optimization of Classification Algo-
rithms”. In: Proc. of KDD-2013. 2013, pp. 847-855 (cit. on p. 5).

[TE11] Antonio Torralba and Alexei A Efros. “Unbiased look at dataset bias”. In:
CVPR 2011. IEEE. 2011, pp. 1521-1528 (cit. on p. 1).

[VEJ21] Sahil Verma, Michael Ernst, and Rene Just. “Removing biased data to improve
fairness and accuracy”. In: arXiv preprint arXiv:2102.03054 (2021) (cit. on

pp. 2, 10).

[Wol96] David H Wolpert. “The lack of a priori distinctions between learning algo-
rithms”. In: Neural computation 8.7 (1996), pp. 1341-1390 (cit. on p. 2).

[WMO7] David H Wolpert and William G Macready. “No free lunch theorems for op-
timization”. In: IFEE transactions on evolutionary computation 1.1 (1997),
pp. 67-82 (cit. on p. 2).

[Yao+18] Quanming Yao, Mengshuo Wang, Yugiang Chen, et al. “Taking human out
of learning applications: A survey on automated machine learning”. In: arXiv
preprint arXiv:1810.13306 (2018) (cit. on pp. 1, 3).

[Z1.18] Ying Zhang and Chen Ling. “A strategy to apply machine learning to small
datasets in materials science”. In: Npj Computational Materials 4.1 (2018),
p. 25 (cit. on p. 3).

[Zho+17] Lina Zhou, Shimei Pan, Jianwu Wang, and Athanasios V Vasilakos. “Machine
learning on big data: Opportunities and challenges”. In: Neurocomputing 237
(2017), pp. 350-361 (cit. on pp. 1, 3).

[ZG09] Xiaojin Zhu and Andrew B Goldberg. “Introduction to Semi-Supervised Learn-
ing”. In: Synthesis Lectures on Artificial Intelligence and Machine Learning 3.1
(2009), pp. 1-130 (cit. on p. 3).

Webpages

[@Aut] Autogluon authors. predictor.py. accessed on 26-07-2024. URL: https://github.
com/autogluon/autogluon/blob/0e3bcOe54ab4b0edf865c8b99e1418472006d6b7/
tabular/src/autogluon/tabular/predictor/predictor.py (cit. on p. 10).

[@Coo] Aidan Cooper. Ezplaining Machine Learning Models: A Non-Technical Guide
to Interpreting SHAP Analyses. URL: https://www.aidancooper.co.uk/a-
non-technical-guide-to-interpreting-shap-analyses/ (cit. on p. 23).

[@deva) scikit-learn developers. f1__score. URL: https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_score.html (cit. on pp. 19, 20).

Bibliography

https://github.com/autogluon/autogluon/blob/0e3bc0e54ab4b0edf865c8b99e1418472006d6b7/tabular/src/autogluon/tabular/predictor/predictor.py
https://github.com/autogluon/autogluon/blob/0e3bc0e54ab4b0edf865c8b99e1418472006d6b7/tabular/src/autogluon/tabular/predictor/predictor.py
https://github.com/autogluon/autogluon/blob/0e3bc0e54ab4b0edf865c8b99e1418472006d6b7/tabular/src/autogluon/tabular/predictor/predictor.py
https://www.aidancooper.co.uk/a-non-technical-guide-to-interpreting-shap-analyses/
https://www.aidancooper.co.uk/a-non-technical-guide-to-interpreting-shap-analyses/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

[@devb] scikit-learn developers. fbeta score. URL: https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.fbeta_score.html (cit. on pp. 19,

20).

[@deve] scikit-learn developers. precision_score. URL: https://scikit-1learn.org/
stable/modules/generated/sklearn.metrics.precision_score.html (cit.
on p. 19).

[@devd] scikit-learn developers. RandomForestClassifier. URL: https://scikit-learn.

org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html (cit. on p. 47).

[@deve] scikit-learn developers. recall score. URL: https ://scikit - learn . org/
stable/modules/generated/sklearn . metrics.recall _score.html (cit.
on p. 19).

[QEde] Felipe Siqueira Edesio Alcobaga. Meta-feature Description Table. accessed on

26-07-2024. URL: https://pymfe.readthedocs.io/en/latest/auto_pages/
meta_features_description.html (cit. on pp. 7, 35).

[@Eri424] Nick Erickson, Jonas Mueller, Alexander Shirkov, et al. autogluon.tabular. TabularPredictor. fit.
2024. URL: https://auto. gluon. ai/stable/api/autogluon . tabular .
TabularPredictor.fit.html (cit. on p. 18).

[@Luna] Scott Lundberg. bar plot. URL: https://shap.readthedocs.io/en/latest/
example_notebooks/api_examples/plots/bar.html (cit. on p. 23).

[@Lunb] Scott Lundberg. beeswarm plot. accessed on 30-07-2024. URL: https://shap.
readthedocs.io/en/latest/example _notebooks/api_examples/plots/
beeswarm.html (cit. on p. 60).

[@Lunc] Scott Lundberg. Welcome to the SHAP documentation. accessed on 02-08-2024.
URL: https://shap.readthedocs.io/en/latest/index.html (cit. on p. 23).

[@Rec] Leibniz Rechenzentrum. Available SLURM clusters and features. accessed on
26-07-2024. URL: https://doku.lrz.de/available-slurm-clusters-and-
features-11483939.html (cit. on p. 17).

[@Resa| Google Researchers. Classification: Accuracy. URL: https : / / developers .
google.com/machine-learning/crash-course/classification/accuracy
(cit. on p. 19).

[@Resb] Google Researchers. Classification: Precision and Recall. URL: https://developers.
google.com/machine-learning/crash-course/classification/precision-
and-recall (cit. on p. 19).

[@sci] scikit-learn developers. Feature importances with a forest of trees. URL: https:
//scikit-learn.org/stable/auto_examples/ensemble/plot_forest_
importances.html (cit. on p. 22).

[@ST20] Seagate and IDC. Rethink Data. 2020. URL: https://www . seagate . com/
files/www- content /our-story/rethink-data/files/Rethink _Data_
Report_2020.pdf (cit. on p. v).

Webpages 73

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html
https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.fit.html
https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.fit.html
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/bar.html
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/bar.html
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/beeswarm.html
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/beeswarm.html
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/beeswarm.html
https://shap.readthedocs.io/en/latest/index.html
https://doku.lrz.de/available-slurm-clusters-and-features-11483939.html
https://doku.lrz.de/available-slurm-clusters-and-features-11483939.html
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf

74

[@Sha]

Adam Shafi. Random Forest Classification with Scikit-Learn. URL: https://
www .datacamp.com/tutorial/random-forests-classifier-python (cit. on

p. 6).

Bibliography

https://www.datacamp.com/tutorial/random-forests-classifier-python
https://www.datacamp.com/tutorial/random-forests-classifier-python

List of Figures

4.1.

4.2.

4.3.

6.1.
6.2.
6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

Graphical representation of the pipeline. M1 is the first model (labeler),
M2 is the second model. 14

Graphical representation of the “Adds labels” process from Figure 4.1.
Data with pseudo-labels that do not meet a certain threshold get “thrown

away” (trashcan). o 15

Pipeline with Safeguard System included. Pseudo-labeling and training

of M2 only occurs if the safeguard system allows it. Otherwise M1 is

kept as the main model. L o oo 16
Histogram of a threshold of 80% and the change in performance. 26
Histogram of a threshold of 90% and the change in performance. 26

Percentage of data ignored vs change in accuracy for threshold of 1/|labels|.
Orange represents more than 2 labels in a class, whereas blue is a binary
(2 labels) dataset. 27

Percentage of data ignored vs change in accuracy for threshold of 0.5.
Orange represents more than 2 labels in a class, whereas blue is a binary
(2 labels) dataset. 28

Performance Comparison of Safeguard vs Non-Safeguard Models: CD3
high quality 30

Performance Comparison of Safeguard vs Non-Safeguard Models: CD3

medium quality 30

Performance Comparison of Safeguard vs Non-Safeguard Models: OpenML100
high quality 31

Performance Comparison of Safeguard vs Non-Safeguard Models: OpenML100
medium quality Lo 31

Percentage of data ignored vs change in accuracy (accuracyyra—accuracyar).
Each dot represents a dataset. Orange is classifier predicting a positive
change. Blue is negative change. Red is an error with the safeguard

System.o 34

75

76

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

RandomForestClassifier Result (Landmarking): Trained on OpenML100,
OpenML-CC18, CD1, CD2, run on CD3 — bad generalization. Each
dot represents a dataset. Orange is classifier predicting a positive
change. Blue is negative change. Red is an error with the safeguard

System. e e e e 36

RandomForestClassifier Result (Model-Based): Trained on OpenML100,
OpenML-CC18, CD1, CD2, run on CD3 — ok generalization. Each dot
represents a dataset. Orange is classifier predicting a positive change.

Blue is negative change. Red is an error with the safeguard system. . . 37

RandomForestClassifier Result (Clustering): Trained on OpenML100,
OpenML-CC18, CD1, CD2, run on CD3 — ok generalization. Each dot
represents a dataset. Orange is classifier predicting a positive change.

Blue is negative change. Red is an error with the safeguard system. . . 38

RandomForestClassifier Result (Clustering + Model-Based): Trained
on OpenML100, OpenML-CC18, CD1, CD2, run on CD3 — better
generalization. Each dot represents a dataset. Orange is classifier pre-
dicting a positive change. Blue is negative change. Red is an error with

the safeguard system. oL 39

RandomForestClassifier Result (Clustering + Model-Based): Trained
on OpenML100, OpenML-CC18, CD1, CD2, run on OpenML100 —
good resulto 40

RandomForestClassifier: Percentage of data ignored vs change in accu-
racy (accuracyyre — accuracyyri). Each dot represents a dataset. Or-
ange is classifier predicting a positive change. Blue is negative change.

Red is an error with the safeguard system. 41

AutoGluon: Percentage of data ignored vs change in accuracy (accuracyyro—
accuracyyrr). Each dot represents a dataset. Orange is classifier pre-
dicting a positive change. Blue is negative change. Red is an error with

the safeguard system. oL 42

Custom Metric: Percentage of data ignored vs change in accuracy
(accuracynra — accuracyyry). Orange is classifier predicting a positive
change. Blue is negative change. Red is an error with the safeguard

SYstem. 43

fs (B = 2) metric: Percentage of data ignored vs change in accuracy
(accuracypre — accuracyyn). Each dot represents a dataset. Orange is
classifier predicting a positive change. Blue is negative change. Red is

an error with the safeguard system. 44

List of Figures

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

6.31.

6.32.

6.33.

fs (8 = 0.5) metric: Percentage of data ignored vs change in accuracy
(accuracypra — accuracyyr). Each dot represents a dataset. Orange is
classifier predicting a positive change. Blue is negative change. Red is

an error with the safeguard system. 45
F1 metric: Percentage of data ignored vs change in accuracy (accuracyyro—
accuracyyr1). Each dot represents a dataset. Orange is classifier pre-

dicting a positive change. Blue is negative change. Red is an error with

the safeguard system. Lo Lo 46
AutoGluon: Performance Comparison of Safeguard vs Non-safeguard
Models (Landmarking) L oL 46
AutoGluon: Performance Comparison of Safeguard vs Non-safeguard
Models (Clustering) 47
scikit-learn: Performance Comparison of Safeguard vs Non-safeguard
Models (Clustering) o 48
scikit-learn: Performance Comparison of Safeguard vs Non-safeguard
Models (Model-Based + Clustering): Run on OpenML100 49
scikit-learn: Performance Comparison of Safeguard vs Non-safeguard
Models (Model-Based + Clustering): Runon CD3 49
scikit-learn: Performance Comparison of Safeguard vs Non-safeguard
Models (Landmarking) 50
scikit-learn: Performance Comparison of Safeguard vs Non-safeguard
Models (Model-Based) — Bad Performance 50
scikit-learn: Performance Comparison of Safeguard vs Non-safeguard
Models (Model-Based) — Good Performance 51

scikit-learn: Percentage of data ignored vs change in accuracy. Each dot
represents a dataset. Orange is classifier predicting a positive change.
Blue is negative change. Red is an error with the safeguard system. . . 52
scikit-learn: Percentage of data ignored vs change in accuracy. Each dot
represents a dataset. Orange is classifier predicting a positive change.
Blue is negative change. Red is an error with the safeguard system. . . 52
scikit-learn: Percentage of data ignored vs change in accuracy. Each dot
represents a dataset. Orange is classifier predicting a positive change.
Blue is negative change. Red is an error with the safeguard system. . . 53
scikit-learn: Percentage of data ignored vs change in accuracy. Each dot
represents a dataset. Orange is classifier predicting a positive change.
Blue is negative change. Red is an error with the safeguard system. . . 53
scikit-learn: Percentage of data ignored vs change in accuracy. Each dot
represents a dataset. Orange is classifier predicting a positive change.

Blue is negative change. Red is an error with the safeguard system. . . 54

List of Figures

7

78

6.34.
6.35.
6.36.
6.37.
6.38.
6.39.
6.40.
6.41.
6.42.

Feature Importances (Model-based) for OpenML100 using MDI 55
Feature Importances (Landmarking) for OpenML100 using MDI 56
Feature Importances (Clustering) for OpenML100 using MDI 56
Mean SHAP Values (Model-Based) 57
Mean SHAP Values (Landmarking) 57
Mean SHAP Values (Clustering) 58
SHAP Values (Model-Based) 59
SHAP Values (Landmarking) 59
SHAP Values (Clustering) 60

List of Figures

List of Tables

6.1.

6.2.
6.3.
6.4.

6.5.
6.6.
6.7.
6.8.
6.9.

6.10.

Mean values for different thresholds, run on OpenML100. “Is Better?”
being “True” means that the mean with safeguard system is larger than
the mean without it.o o o
Comparing high quality vs medium quality on OpenML100.
Comparing high quality vs medium quality on CD3.
Mean accuracies for different quality selections. HQ is high quality, MQ
is medium quality. “Is Better?” being “True” means that the mean with
safeguard system is larger than the mean withoutit.
Comparing S1’s M1 model to the S2 model
Comparing S1’s M1 model to S3’s M2 model
Comparing S1’s M2 model to S3’s M2 model
Comparing SU’'s M2model to S2
AutoGluon: Comparison of Mean with Safeguard System and Mean for
Different Meta Features L.
AutoGluon: Comparison of Mean with Safeguard System and Mean.
“Is Better?” being “True” means that the mean with safeguard system

is larger than the mean withoutit.

79

Glossary

auto-sklearn . pp. 5, 6, 9, 10
Auto-WEKA . p. 5
AutoGluon . pp. 5, 13, 16-18, 27, 32, 4043, 4648, 51, 54, 60, 63, 76, 77, 79

AutoML . pp. 2, 5,6

CD1 . pp. 18, 33, 36-40, 65, 76
CD2 . pp. 18, 33, 36-40, 65, 76

CD3 . pp. 18, 28-30, 33, 35-39, 43, 49, 51, 65, 75-77, 79
ML-Plan . p. 5

OpenML-CC18 . pp. 18, 33, 36-40, 43, 76

OpenML100 . pp. 18, 27-29, 31, 33, 35-40, 43, 49, 51, 55, 56, 75-79
pymfe . pp. 7, 18, 20, 22, 28, 32, 35, 64

scikit-learn . pp. 5, 6, 16, 18, 40, 41, 47-54, 63, 77

81

Colophon

This thesis was typeset with IXTEX 2¢. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide

documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Cover
	Titlepage
	Abstract
	Acknowledgement
	Contents
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Thesis Structure

	2 Foundations
	2.1 AutoML
	2.2 AutoGluon
	2.3 Auto-Sklearn and Scikit-Learn
	2.4 Semi-Supervised Learning
	2.5 Meta-Features

	3 Related Work
	3.1 AutoML and semi-supervised learning combined
	3.2 Autogluon's current semi-supervised support
	3.3 Summary

	4 Semi-Supervised AutoML Pipeline
	4.1 AutoML Pipeline
	4.2 Safeguard System

	5 Experiments
	5.1 Experimental Setup
	5.2 Datasets
	5.3 Performance Metrics
	5.4 Evaluation Metrics
	5.4.1 SHAP

	6 Results
	6.1 Settings Affecting Performance (RQ1)
	6.2 Linear-Ensembling versus Autogluon's Built In Semi-Supervised Learning Support (RQ2)
	6.3 Meta-Features (RQ3 and 4)
	6.4 Safeguard System (RQ5)
	6.4.1 AutoGluon
	6.4.2 RandomForestClassifier
	6.4.3 Conclusion

	7 Conclusion
	7.1 Future Work

	A Appendix
	A.1 Custom Datasets
	A.2 Safeguard System Training Procedure

	Bibliography
	List of Figures
	List of Tables
	Glossary
	Colophon

